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Abstract

There is an increasing interest to restore the ecosystem services that eelgrass provides,

after their continuous worldwide decline. Most attempts to restore eelgrass using seeds are

challenged by very high seed losses and the reasons for these losses are not all clear. We

assess the impact of predation on seed loss and eelgrass establishment, and explore meth-

ods to decrease seed loss during restoration in the Swedish northwest coast. In a laboratory

study we identified three previously undescribed seed predators, the shore crab Carcinus

maenas, the hermit crab Pagurus bernhardus and the sea urchin Strongylocentrotus droe-

bachiensis, of which shore crabs consumed 2–7 times more seeds than the other two

species. The importance of shore crabs as seed predators was supported in field cage

experiments where one enclosed crab caused 73% loss of seeds over a 1-week period on

average (~ 21 seeds per day). Seedling establishment was significantly higher (14%) in

cages that excluded predators over an 8-month period than in uncaged plots and cages that

allowed predators but prevented seed-transport (0.5%), suggesting that seed predation con-

stitutes a major source of seed loss in the study area. Burying the seeds 2 cm below the sed-

iment surface prevented seed predation in the laboratory and decreased predation in the

field, constituting a way to decrease seed loss during restoration. Shore crabs may act as a

key feedback mechanism that prevent the return of eelgrass both by direct consumption of

eelgrass seeds and as a predator of algal mesograzers, allowing algal mats to overgrow eel-

grass beds. This shore crab feedback mechanism could become self-generating by promot-

ing the growth of its own nursery habitat (algal mats) and by decreasing the nursery habitat

(seagrass meadow) of its dominant predator (cod). This double feedback-loop is supported

by a strong increase of shore crab abundance in the last decades and may partly explain the

regime shift in vegetation observed along the Swedish west coast.
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Introduction

Coastal ecosystem degradation is occurring worldwide as a result of anthropogenic activities

[1]. One of the world’s most threatened ecosystems is seagrass habitats which are disappearing

in all parts of the world at an alarming rate. It has been estimated that nearly 30% of the global

seagrass area has been lost since the early 1900s, with an accelerating loss rate [2–4]. In many

parts of the world, nutrient pollution and coastal eutrophication are considered a major cause

of seagrass decline, where seagrass beds become dominated or replaced by mats of ephemeral

macroalgae [5,6]. However, many seagrass systems have failed to recover even though nutrient

loads have decreased, possibly because shifts in environmental conditions are generating feed-

back mechanisms that maintain the system in an unvegetated or algal dominated state [7–10].

These types of regime shifts [11] appear to be particularly common in shallow coastal ecosys-

tems where increased sediment resuspension [12,13] and local recycling of sediment nutrients

[7] are suggested as positive feedback mechanisms that prevent the return of seagrass.

Changes in the coastal food webs caused by overfishing of large fish predators can contrib-

ute to seagrass decline through a trophic cascade. For example, a decline in large predators

increase mesopredators (e.g., small fish and decapod predators) and in turn decrease the abun-

dance of algae mesograzers (e.g., small crustaceans and gastropods), thereby releasing ephem-

eral algae from grazer control negatively affecting seagrass [14–16]. Since large fish lack

nursery habitats when seagrass beds decline, such cascading effects can create a feedback loop

resulting in an accelerating loss of seagrass [17]. Most of existing research has focused on indi-

rect top-down effects from mesopredators on seagrass. Less is known about direct effects of

omnivorous mesopredators that may consume seagrass shoots or seeds.

Eelgrass (Zostera marina L.) is one of the most widely distributed species of seagrass and is

the dominating species of the temperate North Atlantic [4]. As a result of anthropogenic

impact, eelgrass has experienced rapid decline throughout is distributional range, including

northern Europe and Scandinavia [3,18]. On the Swedish west coast, around 60% of the eel-

grass has been lost since the 1980s [19]. Studies suggest that the primary mechanism behind

the decline is an increased abundance of ephemeral algal mats that cover the eelgrass beds dur-

ing the summer, caused by eutrophication in combination with overfishing, which has caused

a trophic cascade that promote the growth of algae [20–22]. Despite decreasing nutrient loads

to the coastal waters, no recovery of eelgrass has occurred [23,24]. Since eelgrass meadows pro-

vide a number of important functions to the coastal systems, as well as several valuable ecosys-

tem services to society [25,26], there is an increasing interest to develop restoration techniques

to recover these habitats in Scandinavian waters. Recent studies to develop restoration meth-

ods using seeds along the Swedish west coast found very high seed losses, making it difficult to

use seeds for large scale restoration due to the low seedling establishment [27,28]. The results

indicate that the seed losses may be due to predation [28], but eelgrass seed predators have

never been identified in this area. In Sweden, seeds are released from the reproductive shoots

in July-August and remain dormant in the sediment until the spring, when they germinate.

During this long dormancy period of 7–9 months, seeds are exposed to transport by hydrody-

namics and predators, and likely also suffer high mortality due to infections and premature

germination [28].

Predation of eelgrass seeds has been documented in some parts of the world where several

species of crabs, mollusks, fish, turtles and ducks have been identified as predators [29–33].

However, little is known about potential seed predators and their impact on eelgrass in north-

ern Europe, since none of these previously reported seed predator species is present in this

region. One potential seed predator in Europe is the shore crab Carcinus maenas. The shore

crab is an opportunistic omnivore that feeds on various benthic organisms including infauna,
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mobile epifauna and plant material [34,35] Recent studies have found that shore crabs can

consume parts of eelgrass shoots [36], but little is known regarding its capacity for seed preda-

tion. The shore crab is of special interest since it is a very abundant species in northern Europe

and has shown a dramatic increase in abundance in the last decades as the populations of cod

has decreased [37,38].

The aim of this study is to a) identify species that can prey on eelgrass seeds, b) assess if seed

predation is a major cause of the low seedling establishment observed along the west coast of

Sweden, c) assess if seed burial can reduce seed losses and increase seedling establishment.

We also describe new positive feedback mechanisms that could explain observed changes in

coastal vegetation and lack of eelgrass recovery in the study area.

Methods

Zostera marina seed predators

To identify eelgrass seed predators commonly found in eelgrass meadows in Sweden, a total of

nine invertebrate predators and omnivores was studied in the laboratory. The dominating

size-ranges of the predators found in the field when eelgrass seeds are released were included

in the study (Table 1). Eelgrass seeds were collected by harvesting reproductive shoots in the

Gullmars fjord, Gåsö at 1–3 m depth on 18-Jul 2014. Reproductive shoots were stored in out-

door tanks at the Sven Lovén Center, Kristineberg station until the seeds were released. Per-

mission to harvest eelgrass shoots and for carrying out field experiments were obtained from

the Swedish Administrative Board of Västra Götaland. Animal species were collected in an

eelgrass meadow at Bökevik bay, near Kristineberg. Collected animals were measured and

weighted, and used within 3 days of collection. Animals were starved for 24 h prior to experi-

mentation. Seed sizes were 1.5 x 3.0 mm diameter and a weight of 7 mg.

The experiment was carried out in 15 PVC tanks (36 x 26 x 22 cm) with flow-through sur-

face water from the fjord to maintain similar conditions as in the field. Ten eelgrass seeds were

placed on the bottom of the tanks after one randomly chosen animal was placed in each tank.

Trials were run for 24 hr and the setup repeated during a two-month period (Jul and Aug of

2014) using 20–30 replicates per species (Table 1). After each trial, the number of remaining

seeds was counted and the percentage of lost seeds was estimated for each species. Damaged

and broken seeds were included as losses since seed viability was already lost.

Burial depth and predation

To assess if burial protected seeds from predation, ten seeds were placed either at the sediment

surface, at 1 cm or at 2 cm depth in separate 24 hour trials. Three predators of eelgrass seeds

identified in the first study (shore crabs, hermit crabs and sea urchins) were tested. The experi-

ment was carried out in the tanks used in the first study, provided with a 5 cm layer of natural

sediments collected in a nearby bay. The sediment was pre-sieved (1 mm) to remove potential

eelgrass seeds and debris, shells, or organisms that could affect the experiment. One animal

was placed per tank with 15 replicates of each burial depth. After each trial, the sediment was

sieved through a 1 mm mesh to recover the seeds. Pilot studies without predators showed that

100% of the seeds were recovered with this method (n = 10).

Although the gastropod Hinia nitida did not consume any seeds in the first experiment,

pilot studies indicated that these snails could bury the seeds below the sediment surface, which

may affect rates of predation and transport. To assess the prevalence of this behavior, we

included an extra treatment with 10 seeds placed on the surface, on 5 replicated tanks with 6

H. nitida snails per tank (representing natural field densities; approximately 70 snails m-2).
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After 24 hours, seed burial by snails was calculated as the number of seeds that were not visible

in the sediment surface.

Seed predation in the field: 1-week experiment

A cage experiment was designed to assess the effect of predation and transport on seed loss in

the field, and to test whether or not covering the seeds with sediment would reduce loss rates.

To assess the effect of transport of seeds by waves and currents, non-edible, artificial seed

mimics were also used. Five cage treatments were used: a) uncaged seeds on the sediment sur-

face (Open), b) uncaged seeds covered with sand (Open+S), c) closed cage with seeds on the

sediment surface and a shore crab (Cage+P), d) closed cage with seeds covered with sand and

a crab (Cage P+S) and e) closed cage with only seeds on the sediment surface (Cage C; Fig 1).

In the sand-cover treatments, seeds were covered with a 2 cm layer of sieved (2 mm) natural

sand collected in the same bay. Shore crabs between 20–40 mm were selected as seed predators

for the cage experiment since this species and size showed the highest seed predation rates in

the laboratory (see results). One shore crab was used in each cage, equivalent to 5 crabs m-2,

which is representative of high natural densities in shallow bays in the study area [39,40].

The experiment was carried out in a semi-exposed bay (Bökevik) with sandy sediment and

a natural eelgrass bed in August 2014, which coincides with the period when eelgrass seeds are

naturally released from reproductive shoots along the Swedish west coast (E. Infantes, unpubl.
data). The experimental plots (0.2 m2) were placed at 1.5 m depth, 5 m apart, along a transect

parallel to the coast, at least 5 m from the nearest natural eelgrass patch. The plot corners were

marked with nailed ribbons for later identification. Cages were made of a 1 mm nylon mesh

Table 1. Seed predation in the laboratory. Tested sizes for each species (carapace width for C. maenas and P. bernhardus, total length for Palaemon sp.,

shell length for other species) and biomass (wet weight). Seeds consumed after 24 h, mean+SE, (10 seeds offered).

Animal Species Size (cm) Biomass (g) Replicates Predation (%)

Decapod Carcinus maenas 1.1–6.4 0.4–65.7 30 51.5 ± 7.5

Pagurus bernhardus 0.5–1.4 0.2–1.3 (no shell) 25 6 ± 2.5

Palaemon elegans 2.2–4.1 0.64 25 0

Palaemon adspersus 2.5–5.5 0.23–0.70 25 0

Echinoderm Strongylocentrotus droebachiensis 1.2–2.8 N/A 20 36.7 ± 9.3

Asterias rubens 5–21 5–42 25 0

Gastropod Hinia nitida 1.2–2.8 N/A 25 0

Littorina littorea 1.7–3.5 N/A 25 0

Rissoa membranacea 0.2–0.7 N/A 25 0

doi:10.1371/journal.pone.0168128.t001

Fig 1. Diagram of treatments used in the 1-week field experiment. a) seeds on the sediment surface (Open), b) seeds covered with

sand (Open+S), c) cage with seeds and a shore crab (Cage+P), d) cage with seeds covered with sand and a shore crab (Cage P+S) and e)

cage with seeds (Cage C). Seed mimics represented in blue. The figure is not drawn to scale.

doi:10.1371/journal.pone.0168128.g001
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(Sefar-nitex 06-1000/57) measuring 0.45 x 0.45 x 0.60 m, which excludes all potential seed

predators. The lower 10 cm of the cages were buried in the sediment and the tops were closed

using cable ties. Previous studies in shallow bays in the study area have found no detectable

effects of cage artifacts (such as reduced light and water flow caused by the cage structure) on

the benthic community after 3 and 6 weeks when using these cages [20]. In the study, no sig-

nificant differences were found between treatments of cages with holes (open cages) and with-

out cages for any biological variable [20]. These cages also allow small epibenthic fauna to

migrate through the mesh and colonize the cages in high numbers, and thus provide the

enclosed crabs with alternative sources of food (see [20] for details about the caging methods).

Before adding the seeds in the cages, all resident epifauna and infauna were thoroughly

removed using hand nets with 1 mm mesh. Sediment was sieved with the nets up to 5 cm

depth. Crabs were collected within 1 hour before the beginning of each trial at the same depth

and location as where the experiment was carried out. Carapace width and wet weight and

were measured in each crab before and after the experiment to check for molt and assess the

condition of the crabs after the enclosure period. Two trials of 1-week were carried out using 3

replicates of each treatment in each trial. At the beginning of each trial, 200 eelgrass seeds and

20 artificial seeds (mimics) were added to each plot. The trials were initiated during calm

weather conditions and no transport of seeds were observed during the start of the trials.

Seed mimics were made from nylon cord and designed to mimic the size, shape and specific

tissue density of natural eelgrass seeds (1.5 x 3.0 mm diameter; density of 1 g cm−3; see [41] for

more details on the seed mimics). Pilot studies showed that seed mimics were not damaged or

consumed by the assessed seed predators. Losses of seed mimics should therefore reflect seed

transport and other non-predatory losses. Pilot tests were performed to calculate the minimum

flow velocities necessary transport seeds of eelgrass and seeds mimics using a hydraulic flume.

In the test, eelgrass seeds started to move at flow velocities higher than 14–16 cm/s while mim-

ics moved at 10–12 cm/s over sandy sediment. Sinking velocities were also higher for eelgrass

seeds (6–7 cm/s) than for seed mimics (4.5–5 cm/s). These differences in seed transport and

sinking velocities indicate that seed mimics would be transported at slightly lower flows com-

pared to natural seeds. Thus, using loss rates of mimics to approximate the loss of natural seed

due to transport would result in a slight overestimate of the effect of water flow on the overall

loss.

At the end of a 1-week trial, remaining seeds were collected by sieving (1 mm) the top 5–10

cm of the sediment from the plots, and counted in the laboratory. Sieving controls were per-

formed to check the accuracy of the seed recovery method, which showed that 96% of the

seeds were recovered (n = 5).

Rates of seed losses caused by predation and transport was estimated from the field experi-

ments. First, seeds losses due to handling (not being able to recover all seeds) were estimated

as the loss of eelgrass and artificial seeds found in the closed cages without crabs. Then, seed

losses were estimated by subtracting the seed losses on each treatment to the seed losses on the

close cage treatment, to remove the handling effect (Eq 1).

Seed losses ¼ Seed loss }Treatment} � Seed loss }Cage Close} ð1Þ

Seed losses due to predation were estimated by subtracting the losses of seeds mimics from

the losses of eelgrass seeds. Seed losses due to transport were estimated as the losses of seed

mimics. Losses of seed mimics due to transport in the caged treatments were assumed to

be zero, and losses in the uncaged treatments (Open) were assumed to be a result only of

transport.
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Seed predation in the field: 1-month and 8-month experiments

To assess the effect of seed predation and transport on seed recovery and seedling establish-

ment over larger time scales, a 1-month and an 8-month experiment were carried out, respec-

tively, in the Gullmars fjord area using similar methods as in the 1-week experiment. The

1-month experiment was performed from 6-Aug to 4-Sep of 2014 at the same location as the

1-week experiment using 3 different cage treatments: eelgrass seeds planted on the sediment

surface (Open), covered with sand (Open+S) and protected with a closed cages (Cage C) using

200 eelgrass seeds and 20 seed mimics in each plot (n = 3). The main aim of this study was to

estimate losses due to transport and predation in uncaged treatments over a 1 month period,

by comparing losses of natural and mimic seeds, and if covering the seeds with sand would

affect losses over 1 month period. The closed cage treatment was indented as a control, to esti-

mate losses not due to transport and predation. Loss rates were calculated in the same way as

explained for the 1-week experiment. Cage walls were cleaned weekly from fouling. A visual

inspection at the end of the experiment did not show any change in the sediment type caused

by the cages, which could have altered the treatment effect.

The 8-months experiment was performed from Sep 2013 to May 2014, which coincides

with the dormancy and germination period of eelgrass seeds in the Swedish west coast [28]. In

this experiment the aim was to assess the effect of predation on both seeds and possibly seed-

lings by assessing the rate of seedling establishment in the spring. The experiment was carried

out at approximately 1.8 m depth on unvegetated sediment, approximately 20 m from a natu-

ral Z. marina meadow in a sheltered bay at the island Gåsö. In addition to the Open and Cage

C treatments used in the previous experiment, an open cage treatment was added (Open C),

with 15x15 cm openings at each side placed 3–5 cm above the sediment surface. These open-

ings allowed predators such as shore crabs to access the cage [20], but reduced seeds from

being transported out by hydrodynamics. One-month of continuous measurements of flow

velocities at the study site in the fall using an acoustic Doppler velocimeter (Vector, Nortek),

showed velocities (<10 cm/s) at the experimental site (E. Infantes, unpubl. data), which is

below the threshold for transport of seeds (i.e. 14–16 cm/s), making seed transport out of the

cages highly unlikely. Two hundred eelgrass seeds were placed on the sediment surface in each

plot (n = 4). No seed mimics were used in this experiment. Since the Swedish winter is charac-

terized by low water temperature and low light conditions [28], which reduces algae growth,

cages were not cleaned during the winter. In the spring when the experiment was terminated,

the cages were only lightly fouled with microalgae. Visual inspection of the sediment surface at

the end of the experiment indicated slightly finer sediment inside the closed and open cages

compared to plots without cages, but appeared not to differ between the two cage treatments.

Statistical analysis

The effect of seed burial depth on predation in the laboratory study was assessed using a 2-way

fixed factor ANOVA model with seed predator species and seed burial depth as independent

variables and percent predation as the dependent variable. The effect of seed predation in the 3

cage experiments was assessed using 1-way fixed factor ANOVA models with cage treatments

as independent variables and percent losses of eelgrass seeds and seed mimics as dependent

variables. The loss of natural and seed mimics was analyzed in separate models to avoid

pseudo-replication since they were present in the same plots. Before analyses were performed,

all data were tested for homoscedasticity with Cochran’s C-test. The data from the laboratory

study were square root-transformed to homogenize variances [42]. All figures show untrans-

formed data. A posteriori multiple comparisons were carried out with the Student-Newman-

Keuls (SNK) procedure.
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Results

Zostera marina seed predators

Three of the 9 assessed species repeatedly consumed or damaged eelgrass seeds in the labora-

tory. Shore crabs showed the highest predation rates with 51.5 ± 7.5% (mean ± SE) of the 10

eelgrass seeds consumed per day (Table 1). Shore crabs appeared to consume the whole seed as

very little remains were found in the tanks. Predation was found in all tested size-classes, being

very variable for the 11–64 mm carapace widths, CW, (Fig 2). The sea urchin Strongylocentro-
tus droebachiensis also showed high consumption rates of seeds (37% on average), whereas the

hermit crab Pagurus bernhardus mainly damaged the seeds, as indicated by broken seed coats

and seed embryos in the tanks, resulting in 6% loss of seeds on average. Predation rates in sea

urchins and hermit crabs did not seem to be size related. No losses or damages of seeds were

caused by the other species (Table 1).

Seed burial depth and predation

Testing seed predation in more natural conditions with sediment, showed that burial depth

decreased consumption rates significantly for all predators and that shore crabs consumed sig-

nificantly more seeds (on average 30% per day) than hermit crabs and sea urchins (7.7 and

4.7%, respectively), which did not differ from each other (Table 2; SNK-test at p<0.05; Fig 3;

S1 Table). Shore crabs consumed 56% of the seeds on the sediment surface, while the hermit

crab P. bernhardus and the sea urchin S. droebachiensis consumed or damaged 21% and 13%

of the seeds, respectively (Fig 3). Predation rates were significantly lower when seeds were

Fig 2. Size of shore crab (C. maenas) and predation of eelgrass seeds.

doi:10.1371/journal.pone.0168128.g002
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buried at 1 cm depth, where shore crabs, hermit crabs and sea urchin consumed on average

20, 2 and 0% of the seeds, respectively. At 2 cm depth, seeds were not consumed by any species.

The gastropod Hinia nitida did not prey on seeds, but buried 10.2 ± 3.1% (mean ± SE) of the

seeds below the sediment surface. The seed burial depth caused by H. nitida was not assessed.

Seed predation in the field: 1-week experiment

Losses of natural eelgrass seeds in the 1-week field experiment differed significantly between

cage treatments, indicating strong effects of both seed predation and transport, and a reduc-

tion of predation by covering the seeds with sand (Table 3, S2 Table). In the closed cage treat-

ments, loss rates in cages with one enclosed shore crab (on average 82%) was significantly

higher than when the seeds were covered with sand, and in caged without crabs (on average 28

and 8% loss, respectively; SNK-test at p<0.05; Fig 4a). Losses of seed mimics in the closed cage

treatments showed a strikingly different pattern with relatively low and similar losses (27–

32%) that did not differ significantly between treatments (Fig 4b). Losses of natural seeds

placed on the sediment surface without cages were high (on average 95%) and similar to losses

Table 2. Two-factor ANOVA model testing the proportion of seeds eaten (sqrt-transformed) as a func-

tion of seed predator (shore crab, hermit crabs and sea urchins) and burial depth (0, 1, and 2 cm).

df MS F p

Seed predator (A) 2 37.6 5.7 0.0047

Burial depth (B) 2 146.3 22.2 <0.0001

A x B 4 11.5 1.8 0.1457

Residual 86 6.6

doi:10.1371/journal.pone.0168128.t002

Fig 3. Seed burial depth and predation. Seeds consumed per day (mean+SE) by three potential seed

predator species as a function of burial depth. Different letters above bars denote significant different means

between sediment treatments (SNK-test at P<0.05).

doi:10.1371/journal.pone.0168128.g003
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in the cage treatment with crabs, but losses were significantly lower in uncaged treatments

where the seeds were covered with sand (on average 71%; Fig 4a). Losses of seed mimics were

significantly higher outside the cages (77–78%), but were not significantly affected by sand

cover (Fig 4b). The highest percentage of seed coats (12%), which indicate that seeds have been

subjected to predation, were found in cages with shore crabs and seeds on the sediment sur-

face. In the rest of the treatments, the percentage of seed coats was<2%.

The estimated predation rates on seeds on the sediment surface in the closed cages and

open plots was on average 73% and 36% per week, respectively, after excluding losses found in

Table 3. Cage experiments. One-way ANOVA models testing the effect of cage treatments on the loss of natural and seed mimics in 1-week, 1-month and

8-month long field experiments.

Eelgrass seeds Seeds mimics

df MS F p MS F p

1-Week 4 8122.1 45.6 <0.0001 4200.8 20.1 <0.0001

25 177.9 - - - - - - 308.8 - - - - - -

1-Month 2 5509.7 457.0 <0.0001 5386.1 102.1 <0.0001

6 12.0 - - - - - - 52.7 - - - - - -

8-Months 2 261.3 336.0 <0.0001 - - - - - - - - -

9 0.7 - - - - - - - - - - - - - - -

doi:10.1371/journal.pone.0168128.t003

Fig 4. One-week and one-month cage experiment. Loss of (a) eelgrass seeds and (b) seed mimics in the one-week, and

loss of (c) eelgrass seeds and (d) seed mimics in the one-week. Seeds with: no cage (Open), no cage + sand cover (Open

+S), cage + shore crab (Cage P), cage + shore crab + sand cover (Cage P+S) and cage (Cage C). Different letters above

bars denote significant different means (SNK-test at P<0.05). 200 eelgrass seeds and 20 seed mimics used per

experimental. Mean+SE.

doi:10.1371/journal.pone.0168128.g004
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the closed cages that prevented seed transport and predation (Table 4). Sand cover reduced the

estimated predation rates with on average 73% and 68%, respectively. The estimated loss of

seed mimics due to transport was 50% per week, on average.

Seed predation in the field: 1 and 8 month experiments

The result in the one-month cage experiment was similar to the one-week study, although loss

rates were over all higher. Losses of natural seeds planted on the sediment surface without

cages (on average 98%) were significantly higher than for seeds covered with sand (90%) and

seeds placed in cages (20%; SNK-test at p<0.05; Fig 4c, S3 Table). In comparison to natural

seeds, loss of seed mimics planted on the sediment surface was slightly lower (on average 90%)

and did not differ significantly from the losses of mimics overed with sand (87%). Losses of

mimics in cages were significantly lower (on average 15%; SNK-test at p<0.05; Fig 4d). After

excluding losses in the closed cages, most remaining losses (78% per month) was estimated to

be caused by seed transport (75%).

In the 8-month experiment, the percent seedling establishment rate (no. seedlings/no. of

seeds planted) was significantly higher when seeds were protected by closed cages (14% seed-

lings) compared to cages that allowed predator access, but reduced transport of seeds by

hydrodynamics (0.5% seedling) and seeds planted without cages (0.5% seedlings; SNK-test at

p<0.05; Fig 5; S4 Table).

Discussion

This study identifies three previously undescribed predators of eelgrass seeds, and presents evi-

dence that seed-predation can constitute a major source of seed-loss. We suggest that seed-pre-

dation from shore crabs may play a key role in the present lack of natural recovery of eelgrass

along the Swedish northwest coast, that will challenge restoration attempts in the area. Our

results demonstrate that burying seeds at 2 cm below the sediment surface will decrease preda-

tion rates and could improve chances of successful restoration of eelgrass.

Z. marina seed predators

The laboratory studies found that shore crabs C. maenas, the sea urchin S. droebachiensis and

the hermit crab P. bernhardus could consume significant amounts of eelgrass seeds, where pre-

dation rates of the shore crab was about twice as high as of the other predators. Previous stud-

ies have shown that macroinvertebrates, principally decapod crustaceans, are key predators on

Table 4. Estimates of seed losses in the 1-week and 1-month experiments. Percent loss of eelgrass seeds and mimics in all treatments. Seed losses

were estimated by subtracting the losses on each treatment to the losses on the Cage C (to exclude the handling effect, Eq 1). Losses by transport were esti-

mated as the losses of mimics. Losses by predation were estimated as the difference between losses by transport and losses excluding handling. Mean and

(Std. Err).

All seed losses Losses excl. handling Transport losses Predation losses

Eelgrass Mimics Eelgrass Mimics

1-Week Cage C 8.4 (6.6) 26.7 (5.9) 0 0 0 0

Cage P+S 28.1 (4.3) 31.7 (2.8) 19.7 5.0 0 19.7

Cage P 81.7 (5.6) 28.3 (3.7) 73.3 1.6 0 73.3

Open S 70.8 (7.2) 77.5 (8.1) 62.4 50.8 50.8 11.6

Open 94.7 (1.4) 76.7 (7.4) 86.3 50.0 50.0 36.3

1-Month Cage C 20.2 (2.9) 15.0 (2.9) 0 0 0 0

Open S 90.2 (1.8) 86.7 (6.0) 70 71.7 71.7 1.7

Open 98.0 (0.8) 90.0 (2.9) 78 75 75 3

doi:10.1371/journal.pone.0168128.t004
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seagrass seeds [30,33,43–46], although fish, reptiles and waterfowl have also been reported to

ingest seeds of seagrass [32,47], see Table 5. This study shows for the first time that also an

echinoderm can prey on eelgrass seeds.

The laboratory studies demonstrated that shore crabs 11–64 mm CW could consume high

numbers of eelgrass seeds (Fig 2). Since alternative prey was not available, and the crabs were

confined to small containers in the laboratory study, these consumption rates should be

viewed with caution. However, in the field experiment natural prey sources were available in

the sediment for the enclosed crabs, and small epibenthic fauna could also enter through the 1

mm mesh of the cage. Predation rates in the cage experiment should therefore better represent

natural rates. Using data from the 1-week cage experiment, and excluding losses of seeds

found in the closed cages without predators, it was estimated that one enclosed shore crab

consumed 147 seeds on average, causing a 73% loss of seeds during the 1-week experiment

(equivalent to 21 seeds crab-1 per day). These high consumption rates, despite availability of

alternative prey, suggest that eelgrass seeds constitute an attractive prey item for shore crabs.

Eelgrass seeds contain a high concentration of starch [48], which may constitute an important

source of energy for the crabs. However, although alternative prey sources were available to

the enclosed crabs, the amount was never assessed. It is therefore possible that low abundance

of alternative prey sources could have resulted in unnatural high predation rates of seeds by

the enclosed crabs. To obtain more accurate estimates of the predation pressure on seeds, fur-

ther studies, including food-choice experiments, are needed that assess consumption rates of

seeds when presented together with controlled amounts of natural alternative food sources.

The shore crab is an opportunistic omnivore that feeds on various benthic organisms.

Although it prefers molluscs, crustaceans and polychaetes, it may also consume plant material

and detritus [33,35,49]. Recent studies in Canada indicate that shore crabs may graze on the

Fig 5. Eight-month cage experiment: Seedling establishment. Seeds with no cage (Open), cage with

small holes that let predators in, but prevent seed transport by hydrodynamics (Open Cage) and seeds

protected with cages (Cage C). Different letters above bars denote significant different means (SNK-test at

P<0.05). 200 seeds planted per plot. Mean+SE.

doi:10.1371/journal.pone.0168128.g005
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basal meristem of eelgrass shoots where the tissues are younger and softer [50]. In addition, C.

maenas can damage 39% of eelgrass shoots transplanted in tanks [49] and have been related to

the decline of natural eelgrass beds [51] but their impact on seed predation has not been

assessed. The present study is, as far as we know, the first to demonstrate shore crabs also con-

sume eelgrass seeds.

Importance of seed predation

Earlier studies of seed planting along the Swedish northwest coast have found very high loss

rates of seeds, resulting in seedling establishment rates<1% on average. A study assessing seed

planting methods found that the seedling establishment rates increased 2–6 times if seeds were

covered with a 2 cm layer of sand [28]. However, it was not clear to what degree seed predation

was responsible for those observations since seed and seedlings could also be lost by being

transported by waves and currents [28]. Results from the present study suggest that seed pre-

dation is a major factor behind the unusual high loss rates of seeds in Swedish waters.

In shallow habitats, sediment dynamics and transport of seeds by hydrodynamics may cause

very high loss rates of eelgrass seeds [52]. This was supported in the present study in the more

exposed bay where 77% and 90% of the seed mimics were lost in the open plots after one week

and one month, respectively, likely a result of seed transport by waves and currents. In the one-

week experiment, it was estimated (after excluding losses found in cages that prevented seed

transport and predation) that 50% of the loss of natural seeds in the open plots were due to

hydrodynamic transport and 36% was caused by seed-predation. However, these estimates

likely represent an overestimate of seed transport, and consequently an underestimate of seed

predation, because the transport estimates were based on losses of seed mimics, which were

transported at approximately 27% lower flow velocities than were natural seeds, according to

the laboratory studies. The effect of seed predation could also be hidden by transport of seed

Table 5. Summary of species that prey on Z. marina seeds. nd = no data, b = biomass (g) and b = head width.

Animal Mean size (mm) Type Effect Mean predation (%) Reference

Crustacean Ovalipes ocellatus 18 Seeds Damaged/Consumed 93 Wigand & Churchill 1988

Pagarus longicarpus 9 Seeds Consumed 73 Wigand & Churchill 1988

Panopeous herbstii 22 Seeds Consumed 63 Wigand & Churchill 1988

Carcinus maenas 10–65 Seeds Consumed 52 This study

Zeuxo sp. 1–4.5 Seeds Damaged/Consumed 14 Nakaoka 2002

Pagarus bernhardus 12 Seeds Damaged/Consumed 6 This study

Pagarus longicarpus 7 Seedlings Damaged/Consumed 93 Wigand & Churchill 1988

Mollusk Ilyanassa obsoleta 20 Seedlings Damaged/Consumed 47 Wigand & Churchill 1988

Littorina littorea 20 Seedlings Damaged/Consumed 10 Wigand & Churchill 1988

Echinoderm Strongylocentrotus droebachiensis 22 Seeds Consumed 37 This study

Fish Fundulus heteroclitus 51 Seeds Consumed 5 Wigand & Churchill 1988

Fundulus heteroclitus 84 Seeds Consumed/Dispersed nd Sumoski & Orth 2012

Fundulus majalis 62 Seeds Consumed 1 Wigand & Churchill 1988

Opsanus tau 36 Seeds Consumed 2 Wigand & Churchill 1988

Sphoeroides maculatus 143 Seeds Consumed/Dispersed nd Sumoski & Orth 2012

Lagodon rhomboides 123 Seeds Consumed/Dispersed nd Sumoski & Orth 2012

Worm Arenicola marina 1-10a Seed Burial nd Valdemarsen et al 2011

Reptail Malaclemys terrapin 15-30b Seeds Consumed/Dispersed nd Tulipani & Lipcius 2014

Malaclemys terrapin nd Seeds Consumed/Dispersed nd Sumoski & Orth 2012

Bird Aythya affinis nd Seeds Consumed/Dispersed nd Sumoski & Orth 2012

doi:10.1371/journal.pone.0168128.t005
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mimics accumulating over entire experimental period, as indicated by the low estimate of seed

predation in the one-month cage experiment. Most of the seed predation probably occurred in

the beginning of the experiment when high seed densities could attract opportunistic predators

such as shore crabs that display a type III functional response to prey densities [53]. In contrast,

seed transport likely occurred later in the experiments since the trials were initiated during

calm weather conditions when no seed transport was observed. Since the natural densities of

shore crabs that can consume eelgrass seeds in shallow areas in the study area are similar to the

densities enclosed in the cages (5 crabs m-2) [39,40], natural predation rates of seeds may be as

high as measured in cages with crabs (over 70% per week). High seed predation in the non-

cage treatments was also supported by approximately 70% lower loss of natural seeds covered

with sediment, whereas sand treatment did not affect losses of seed mimics (Fig 4). This result

also suggests that covering the seeds with sand mainly prevent predation (and not seed trans-

port), and the positive effect of seed burial on seedling establishment found in earlier studies

[28] also reflected high rates of predation. The importance of seed predation is also supported

by the 8-month study carried out in a more sheltered bay. Here, cage treatments were used to

separate predation and transport effects, showing a much higher seedling establishment rate

when predators were excluded (14%) compared to when predator had access to the seeds

(0.5%). No difference in seedling establishment rate between open and no cage treatments sug-

gests negligible effects of seed transport by hydrodynamics, despite an indicating of higher sedi-

mentation rates and lower flows in the open cage treatment.

These results provide strong support that predation is a major source of seed loss and that

shore crabs are the dominant seed predator in the study area. Shore crabs are not only efficient

seed predators (as discussed above), but also abundant in eelgrass habitats in the Swedish west

coast (4–20 shore crabs >10 mm m-2) [20,22,40]. The high predation rate and density of shore

crabs would cause a substantial reduction of the eelgrass seed production. Densities of repro-

ductive shoots along the Swedish northwest coast are relatively low (on average 6–10 shoots

m-2) where each shoot produces on average around 40–60 viable seeds (E. Infantes, unpubl.

data). Thus, the annual production of seeds in Swedish eelgrass beds is only in the order of

240–600 seed m-2, which one crab could consume in 15–30 days, according to this study.

The importance of sexual reproduction for the persistence and growth of eelgrass popula-

tions in Scandinavian waters is not well known. One study from the Swedish northwest coast

found that 35% of young eelgrass shoots in the spring originated from seeds [54], and a recent

genetic study in the Gullmarsfjord area estimated the linear clone size within meadows to

2–10 m [27], indicating that sexual reproduction constitutes a significant part of the annual

growth in eelgrass meadows. Seed predation could therefore have a large impact on the popu-

lation dynamics of eelgrass in the study area. However, it is important to note that the field

studies were performed outside natural eelgrass meadows, and that the seed predation rates of

shore crabs may differ inside the meadow. The results from this study may therefore be more

relevant for effect of seed predation during natural colonization or restoration with seeds of

unvegetated areas. The impact of predation may be particularly large during colonization by

rafting reproductive shoots, when seeds are critical for establishment and growth of new

patches. It is, therefore, likely that seed predation has played an important role by preventing

natural re-colonization along the Swedish northwest coast, and could present a challenge for

restoration efforts, particularly when seeds are used.

Seed burial and implications for restoration

In the laboratory, seeds buried at 1 cm depth were consumed significantly less than those at

the sediment surface, while seeds at 2 cm sediment depth were not consumed by any of the
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focal predator species. Seeds planted at 2 cm depth have shown higher germination and seed-

ling survival than at deeper depths or at the sediment surface [28,55–57]. Seeds can be naturally

buried in the sediment by processes such as sediment dynamics driven by hydrodynamics and

sediment reworking by the lugworm Arenicola marina [41,52]. In this study, Hinia nitida was

found to bury 10% of seeds below the sediment surface, which could increase the survival and

success of seedlings. It is the first time that seed burial by H. nitida has been described. In addi-

tion, a sediment layer might also have additional effects such as preventing the development of

marine phytophthora species [58].

During the site-selection process for restoration, water quality, light, hydrodynamics expo-

sure, depth, sediment type are some of the main factors assessed [59]. Results of the present

study underscore the major influence that predators, in particular C. maenas, can have on seed

survival and the need for their consideration during restoration since they could have a large

impact on the restoration success. New methods could be developed to reduce seed predation

by burying seeds in the sediment and minimize the effect of these species. For example,

mechanical planting machines to bury the seeds could be applied to reduce predation [60,61].

In addition, planting a high number of seeds over large spatial scales may also increase the

chances of survival by temporarily overwhelm seed predators. This is partly supported by a

recent review of restoration studies that found higher survival and growth of plants when a

higher number of shoots/seeds were planted [62].

Implications for regime shifts in coastal ecosystems

The large impact of predation from shore cabs on eelgrass seeds may have implications for the

large-scale shift in macro-vegetation that has occurred along the Swedish northwest coast.

Since the 1980s, mats of filamentous macroalgae have increased dramatically in shallow coastal

areas and at the same time, more than 60% of eelgrass has vanished [19,23,63]. Both nutrient

pollution and overfishing are considered the main reasons behind this change. The loss of

large predators in the coastal ecosystem is thought to have caused a trophic cascade, releasing

filamentous macroalgae from grazing control, which can bloom and form large mats at high

nutrient conditions in the absence of functional grazers, with negative effects on eelgrass

growth [19–21,37,64].

Shore crabs may play a key role in the loss and lack of recovery of eelgrass along the Swed-

ish northwest coast by being promoted both by overfishing and eutrophication, and by caus-

ing both direct and indirect negative effects on eelgrass (Fig 6). Shore crabs are a major food

source for Atlantic cod in coastal areas, and cod biomass has been negatively correlated with

the abundance of shore crabs, which has increased 2–3 times along the Swedish west coast

since the 1970s [65]. In addition, abundance of shore crabs correlates positively with the

abundance of filamentous algal mats along the Swedish west coast [66]. Studies have demon-

strated that filamentous macroalgae constitute excellent nursery habitats for shore crabs by

decreasing predation mortality and increasing the juvenile crabs recruitment in the study

area [40,53,67].

The present study suggests that a high abundance of shore crabs may not only affect eel-

grass on a negative scale indirectly through reduced predation on algal grazers, but also

directly through high predation on eelgrass seeds. In addition, shore crabs may cause nega-

tive effects by consuming and uprooting eelgrass shoots [36,49–51]. Shore crabs may there-

fore act as a strong feedback mechanism that maintains a state dominated by algal mats, by

decreasing the nursery habitat of its dominant predator (cod) and also by promoting the

growth of its own nursery habitat (algal mats; Fig 6b). These two feedback loops may cause

an accelerating loss of eelgrass and be partly responsible for the regime shift observed in the
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study region. As far as we know, this is the first time a possible double feedback mechanism

has been identified in a marine system that involves the same trophic interactions. To over-

come these problems and shift the system back to a state dominated by eelgrass, multiple

measures would be required that would allow the return of large fish predators to the coastal

ecosystems, likely involving both increased regulation of fishing and nutrient pollution, as

well as restoration of eelgrass.

Supporting Information

S1 Table. Raw data of burial depth experiment.

(XLSX)

S2 Table. Raw data of 1-week experiment.

(XLSX)

S3 Table. Raw data of 1-month experiment.

(XLSX)

S4 Table. Raw data of 8-month experiment.

(XLSX)

Fig 6. Regime shifts and positive feedback mechanism in eelgrass systems involving seed predation

by shore crabs. Arrow thickness indicates the strength of the trophic interaction and habitat effects, where

dashed lines denote weak effects. Plus and minus signs indicate positive and negative effects, respectively. In

the vegetated state (a), with little impact of nutrient pollution and overfishing, eelgrass beds provide nursery

habitats for a large cod population that can control the abundance of shore crabs and other small predators.

The low abundance of mesopredators allows algal grazers to control ephemeral algae from overgrowing

eelgrass and prevents high rates of seed predation from crabs. In the overfished and eutrohicated state (b),

overfishing of cod has released shore crabs and other mesopredators from predation control, increasing

predation on seeds. The high predation rate on algal grazers releases ephemeral algae from grazer control

than can bloom in the nutrient rich water with negative effects on eelgrass, and indirectly in cod recruitment.

The high abundance of ephemeral algae increases recruitment of shore crabs by increasing availability of

shelter for juvenile crabs.

doi:10.1371/journal.pone.0168128.g006
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