Meysick L, Infantes E, Boström C
PLoS ONE 14(9): e0222020
Publication year: 2019

ABSTRACT

Propagule dispersal is an integral part of the life cycle of seagrasses; important for colonising unvegetated areas and increasing their spatial distribution. However, to understand recruitment success, seed dispersal and survival in habitats of different complexity remains to be quantified. We tested the single and synergistic effects of three commonly distributed ecosystem engineers ̶ eelgrass (Zostera marina), oysters (Magellana gigas) and blue mussels (Mytilus edulis) ̶ on trapping of Z. marina seeds in a hydraulic flume under currents.

Our results suggest that seed retention increases with habitat complexity and further reveal insights into the underlying mechanisms. In eelgrass canopy, trapping occurred mostly through direct blocking of a seed’s pathway, while trapping in bivalve patches was mainly related to altered hydrodynamics in the lee side, i.e. behind each specimen. With increasing flow velocity (24-30 cm s-1 in eelgrass canopy, 18-30 cm s-1 in bivalve patches), modifications of the sediment surface through increased turbulence and erosive processes became more important and resulted in high seed trapping rates.

Furthermore, we show that while monospecific patches of seagrass and bivalves had different trapping optima depending on flow velocities, intermixing resulted in consistently high trapping rates throughout the investigated hydrodynamic gradient. Our results highlight the importance of positive interactions among ecosystem engineers for seed retention and patch emergence in eelgrass.

doi.org/10.1371/journal.pone.0222020

Highlights

• Seagrass seed dispersal is essential for colonization and spatial distribution.
• We investigated the effects of three ecosystem engineers (eelgrass, oysters, and blue mussels) on trapping Zostera marina seeds in a hydraulic flume.
• Seed retention increased with habitat complexity and modifications of sediment surface due to increased turbulence resulted in high seed trapping rates.
• Intermixing of seagrass and bivalves resulted in consistently high trapping rates, highlighting the importance of positive interactions among ecosystem engineers.

The influence of hydrodynamics and ecosystem engineers on eelgrass seed trapping

Related Articles...

A small seedling of the seagrass Posidonia oceanica in a container filled with water

15. Dispersal of seagrass propagules: interaction between hydrodynamics and substratum type

Journal Papers
Pereda L, Infantes E, Orfila A, Tomas F, Terrados J
Marine Ecology Progress Series, 593: 47-59.
Publication year: 2018
Photo of Posidonia oceanica seedlings growing on sandy substrate in the Mediterranean Sea

5. Posidonia oceanica and Cymodocea nodosa seedling tolerance to wave exposure

Journal Papers
Infantes E, Orfila A, Bouma TJ, Simarro G, Terrados J
Limnology and Oceanography 56(6): 2223-2232
Publication year: 2011
Seedlings of eelgrass Zostera marina

12. Eelgrass (Zostera marina L.) restoration methods on the west coast of Sweden using seeds

Journal Papers
Infantes E, Eriander L, Moksnes P-O
Marine Ecology Progress Series 546: 31-45
Publication year: 2016
Caroline Crouzy conducting an experiment to protect Zostera marina (eelgrass) seeds from Carcinus maenas crabs near Kristineberg marine station in Sweden

13. Seed predation by the shore crab Carcinus maenas: a positive feedback preventing eelgrass recovery?

Journal Papers
Infantes E, Crouzy C, Moksnes P-O
PLOS ONE - 11(12): e0168128
Publication year: 2016
Microplastic retention by marine vegetated canopies: simulations with seagrass meadows in a hydraulic flume

35. Microplastic retention by marine vegetated canopies: simulations with seagrass meadows in a hydraulic flume

Journal Papers
de los Santos C, Krång A-S, Infantes E
Environmental Pollution, 269: 116050
Publication year: 2021

34. Making realistic wave climates in low-cost wave mesocosms: a new tool for experimental ecology & biogeomorphology

Journal Papers
Infantes E, de Smit J, Tamarit E, Bouma TJ
Limnology and Oceanography: Methods, 19: 317-330
Publication year: 2021
Close-up photo of Posidonia oceanica fruit with visible seed in the center, taken in Mallorca, Spain.

38. Assessing tolerance to the hydrodynamic exposure of Posidonia oceanica seedlings anchored to rocky substrates

Journal Papers
Zenone A, Badalamenti F, Alagna A, Gorb SN, Infantes E
Frontiers in Marine Science, 2022(8):788448
Publication year: 2022