Zenone A, Badalamenti F, Alagna A, Gorb SN, Infantes E
Frontiers in Marine Science, 2022(8):788448
Publication year: 2022

Abstract

Among a suite of abiotic and biotic factors, the hydrodynamic regime strongly influences the success of seagrass recruitment through sexual propagules. Uprooting of propagules by drag forces exerted by currents and waves is one of the main causes for failed establishment and the consequent recruitment. Substrate type and stability play a key role in determining success of colonization through sexual propagules, as seedling establishment probabilities proved to be significantly higher on rocky bottoms than on unstable unconsolidated substrates.

In this research, the current and wave flow intensity that Posidonia oceanica seedlings anchored to rocky substrates can withstand before uprooting were evaluated and the influence of substrate complexity on seedling anchorage success and anchorage strength was investigated. P. oceanica seedlings withstood the current velocity of 70 cm s-1 and an increased orbital flow velocities up to 25 cm s-1. Seedling adhesion strength ranged from 3.92 to 29.42 N. Results of the present study corroborate the hypothesis that substrate complexity at scales relevant to the size of propagules is a crucial feature for P. oceanica seedling establishment.

The intensity of unidirectional and oscillatory flow that seedlings can withstand without being dislodged assessed in this study support the hypothesis that P. oceanica sexual propagules, once adhered to a consolidated substrate, are able to tolerate high hydrodynamic stress. The results of the present study contribute to re-evaluation of the habitat requirements of P. oceanica, assessing the range of hydrodynamic conditions that this species can tolerate during the early stages of its life history.

Highlights

  • Seagrass recruitment success is influenced by abiotic and biotic factors, with the hydrodynamic regime being a key factor.
  • Uprooting of propagules by drag forces is a major cause of failed establishment.
  • Substrate type and stability are important for successful colonization through sexual propagules.
  • Posidonia oceanica seedlings anchored to rocky substrates can withstand high flow intensities, and substrate complexity at propagule-relevant scales is crucial for establishment.

Related articles

Photo of Posidonia oceanica seedlings growing on sandy substrate in the Mediterranean Sea

5. Posidonia oceanica and Cymodocea nodosa seedling tolerance to wave exposure

Journal Papers
Infantes E, Orfila A, Bouma TJ, Simarro G, Terrados J
Limnology and Oceanography 56(6): 2223-2232
Publication year: 2011
Edge of Posidonia oceanica seagrass meadow on sandy bottom in Cala Millor, Mallorca Island, Spain, Mediterranean Sea.

1. Wave energy and the upper depth limit of Posidonia oceanica

Journal Papers
Infantes E, Terrados J, Orfila A, Cañellas B, Álvarez-Ellacuria A
Botanica marina 52: 419-427
Publication year: 2009
A small seedling of the seagrass Posidonia oceanica in a container filled with water

15. Dispersal of seagrass propagules: interaction between hydrodynamics and substratum type

Journal Papers
Pereda L, Infantes E, Orfila A, Tomas F, Terrados J
Marine Ecology Progress Series, 593: 47-59.
Publication year: 2018
Invasive macroalgae Caulerpa taxifolia growing on dead matte of Posidonia oceanica in Cala d'or, Mallorca, Spain, Mediterranean Sea.

4. Assestment of substratum effect on the distribution of two Caulerpa (Chlorophyta) species

Journal Papers
Infantes E, Terrados J, Orfila A
Estuarine, Coastal and Shelf Science 91: 434-441
Publication year: 2011
The influence of hydrodynamics and ecosystem engineers on eelgrass seed trapping

22. The influence of hydrodynamics and ecosystem engineers on eelgrass seed trapping

Journal Papers
Meysick L, Infantes E, Boström C
PLoS ONE 14(9): e0222020
Publication year: 2019
A photo of a restoration experiment of Posidonia oceanica seedlings in Hornillo, Spain. The image shows several seedlings planted in the sandy substrate of the seafloor and surrounded by protective cages. The water is clear and blue, and the sunlight illuminates the seafloor.

7. Experimental evaluation of the restoration capacity of a fish-farm impacted area with Posidonia oceanica (L.) Delile seedlings

Journal Papers
Domínguez M, Celdrán-Sabater D, Muñoz-Vera A, Infantes E, Martinez-Baños P, Marín A, Terrados J
Restoration Ecology 20: 180-187
Publication year: 2012