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EDITOR'S NOTE:
This article is part of the special series, “The Future of Marine Environmental Monitoring and Assessment.” The series

takes a sneak peek into the future of marine monitoring, where integrating new monitoring technologies with advanced
ecosystem modeling will make it possible to estimate real‐time ecosystem status, improve model precision, and provide a
robust basis for marine environmental assessments.

Abstract
According to the EU Habitats directive, the Water Framework Directive, and the Marine Strategy Framework Directive,

member states are required to map, monitor, and evaluate changes in quality and areal distribution of different marine
habitats and biotopes to protect the marine environment more effectively. Submerged aquatic vegetation (SAV) is a key
indicator of the ecological status of coastal ecosystems and is therefore widely used in reporting related to these directives.
Environmental monitoring of the areal distribution of SAV is lacking in Sweden due to the challenges of large‐scale mon-
itoring using traditional small‐scale methods. To address this gap, in 2020, we embarked on a project to combine Copernicus
Sentinel‐2 satellite imagery, novel machine learning (ML) techniques, and advanced data processing in a cloud‐based web
application that enables users to create up‐to‐date SAV classifications. At the same time, the approach was used to derive
the first high‐resolution SAV map for the entire coastline of Sweden, where an area of 1550 km2 was mapped as SAV.
Quantitative evaluation of the accuracy of the classification using independent field data from three different regions along
the Swedish coast demonstrated relative high accuracy within shallower areas, particularly where water transparency was
high (average total accuracy per region 0.60–0.77). However, the classification missed large proportions of vegetation
growing in deeper water (on average 31%–50%) and performed poorly in areas with fragmented or mixed vegetation and
poor water quality, challenges that should be addressed in the development of the mapping methods towards integration
into monitoring frameworks such as the EU directives. In this article, we present the results of the first satellite‐derived SAV
classification for the entire Swedish coast and show the implementation of a cloud‐based SAV mapping application
(prototype) developed within the frame of the project. Integr Environ Assess Manag 2022;18:909–920. © 2021 The Authors.
Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of
Environmental Toxicology & Chemistry (SETAC).
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INTRODUCTION
Coastal waters are highly productive and diverse ecosys-

tems, particularly if dominated by belts of submerged

aquatic vegetation (SAV). Submerged aquatic vegetation
includes a taxonomically diverse group of macroalgae and
seagrasses that lives below the water surface in coastal and
estuarine waters and grows as large meadows, sometimes in
smaller patches. The presence, type, and abundance of
aquatic vegetation are key indicators of the ecological status
and environmental state of ocean and estuarine waters
(Marbà et al., 2013). Aquatic vegetation, seagrass in partic-
ular, provides critical ecosystem functions and services to
humans; such functions and services are difficult to replace
and include: habitats and spawning grounds for many
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different marine species; uptake and long‐term storage of
CO2 and nutrients that mitigate climate change and reduce
eutrophication, respectively; reduction in wave energy and
stabilization of the sediment, which reduce sediment re-
suspension and erosion; and improvement of water quality
(Barbier et al., 2011; Cole & Moksnes, 2016; Infantes
et al., 2012; Moksnes et al., 2021). Due to the nature of their
important ecosystem functions, up‐to‐date knowledge of
SAV abundance and growth dynamics is critical to assess the
impacts of management and conservation efforts and mon-
itor overall marine health (J. E. Duffy et al., 2019; Frigstad
et al., 2021; United Nations Environment Programme, 2020).
In the European Union, monitoring and assessment of the

status of marine waters are key components of the Water
Framework Directive (WFD), the Marine Strategy Framework
Directive (MSFD), and the Habitats Directive (HD). While the
WFD and MSFD use the terms Good Ecological Status and
Good Environmental Status, respectively, the HD assesses
and reports on “Favourable Conservation Status” (FCS).
All directives require reporting every sixth year. Overall,
these directives consider SAV in one form or another, each
with a somewhat different purpose, yet all with the goal
of protecting the marine environment across Europe more
effectively.
To assess FCS for habitats, biogeographical information

about range, area, and structure and function (often
referred to as quality) of the habitats is needed (DG
Environment, 2017). Habitat types are considered in an FCS
when the natural range of the habitat type is stable or
increasing, long‐term survival of specific structure and
functions is considered secure, and the status of its
typical species is favorable (Council Directive 92/43/EEC).
Changes in spatial coverage or density of SAV reflect the
structure and function of shallow marine habitats, such as:
sublittoral sandbanks, estuaries, mudflats, and lagoons
(Torn et al., 2017). In the WFD, the depth distribution of SAV
is regularly used as an indicator of good ecological status.
If the water gets enriched with nutrients, transparency de-
creases, less light penetrates into the water column and,
consequently, the depth distribution of SAV decreases
(Kuuppo et al., 2006; Nielsen et al., 2002). In the MSFD, SAV
is used as an important biological indicator to assess the
status of two separate quality descriptors: biodiversity and
eutrophication (Ferreira et al., 2011).
In Sweden, environmental monitoring of the areal

distribution of SAV is lacking, as in many other European
countries (European Commission, 2017; Moksnes et al.,
2016; SWAM, 2014). So far, national monitoring of
macrophytes in Sweden has focused on depth distribution
and has been carried out mainly on hard substrates. This
lack of information about the areal distribution of SAV
growing on soft bottom substrates was identified as an in-
adequacy during the initial assessment of coastal vegetation
in Sweden for the MSFD (SWAM, 2012) and a clear obstacle
impeding the effectiveness of the WFD in the protection of
eelgrass habitats (Moksnes et al., 2016). Information on the
areal distribution of eelgrass and other marine habitats is

also required for the assessment of FCS under the EU
Habitat Directive, for monitoring Natura 2000 sites, and
other measures (Dahlgren et al., 2012).

Most common SAV monitoring methods involve field‐
based observations, for instance, through diving, optical
methods based on aerial and underwater drones, aerial
photographs or commercial very high‐resolution satellite
imagery, and acoustic technologies such as single‐beam
echosounding sidescan and multibeam sonars. These
methods all provide highly detailed information on cov-
erage and distribution of SAV, but also have certain limi-
tations. They either cover only smaller areas, and are
therefore not suitable for large‐scale assessments, or the
data collection is expensive and unsystematic, thus hin-
dering consistent, repeatable mapping of SAV. This limits
our ability to comprehensively capture the distribution and
dynamics of these underwater coastal communities and
how they change through time. (J. E. Duffy et al., 2019;
Rowan & Kalacska, 2021; Stæhr et al., 2019; Timmermann
et al., 2021). However, all of these technologies are widely
used and needed to validate satellite‐based technologies.

At large scale, analyzing free satellite remote‐sensing
imagery is the only cost‐efficient method that can facilitate
operational and consistent monitoring of SAV. All year and
systematic satellite sensors can cover large areas quickly and
repeatedly, allowing the assessment of different vegetation
stages during the growing season in optically shallow waters
that are sufficiently clear. However, like all optical methods,
the satellite‐based approach reaches its limits in deeper
and/or turbid waters. In these so called “optically deep wa-
ters,” the incoming light does not reach the seabed and
thus, the benthos cannot be detected by satellites. De-
tecting SAV distribution down to the depth limit is therefore
often challenging using optical methods.

To respond to the information gap in Sweden, this project
was initiated with three primary objectives: (1) produce the
first nationwide marine‐habitat map at 10m spatial reso-
lution with the description of three classes: SAV, soft sub-
strate without vegetation, and hard substrate without
vegetation, using Copernicus S2 satellite imagery captured
between 2019 and 2020; (2) develop a cloud‐based SAV
classification application (prototype) based on machine
learning (ML) and S2 imagery to be operated by officers with
different levels of experience; (3) evaluate the accuracy in
the SAV classification estimated using S2 imagery with
survey and aerial drone data.

The results of the project are used to determine if large‐
scale, S2‐based SAV classifications can be considered for
future monitoring obligations, and if it would make sense to
pursue the development of a fully functional SAV mapping
application based on the results of the prototype.

MATERIALS AND METHODS

Study area

The project included the entire shallow coastal zone of
Sweden, an area covering almost 50 000 km2. The estimated
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total area that is shallower than 10m covers 9300 km2 ac-
cording to nautical chart data (Naturvårdsverket, 2006). Be-
fore the analysis, the coastline was divided into 54 regions
considering environmental characteristics (i.e., water quality)
and Sentinel‐2 scene edge effects, mainly for better handling
of the classification model (Figure 1). The Swedish coastline
represents major gradients in environmental conditions in
terms of salinity, eutrophication, seabed substrate, temper-
ature, and exposure, at both small and large scales (Wikström
et al., 2016).

Input satellite data

We used imagery from the Copernicus S2 mission, which
comes in the constellation of two satellites (S2A and S2B) in
a sun‐synchronous orbit. Sentinel‐2A was launched in June
2015 and S2B in July 2016. The data are free of charge and
globally available, with a revisit time of every 5 days at the
equator and every 2–3 days in Sweden. Each of the satellites
hosts a Multi‐Spectral Instrument covering 13 spectral
bands spanning from the visible to the shortwave infrared
(443–2190 nm), with a swath width of 290 km (TAS, 2021).

For the SAV mapping, the first four optical bands of S2
(coastal aerosol, blue, green, and red) were used, all of
which have a spatial resolution of 10× 10m, with the ex-
ception of the coastal aerosol band, which has a spatial
resolution of 60m. Therefore, the coastal aerosol band was
resampled to 10m to match the other input bands and
achieve a high resolution in the SAV map. To cover the
entire Swedish coastline, 35 S2 tiles are required. Each tile
covers 100× 100 km and is approximately 600MB in size.
We selected images mainly from spring and summer 2019.
For seven regions out of 54, data from April to June 2020
was used because no suitable dataset from 2019 was avail-
able. The images used for further processing and eventually
mapping were selected based on criteria such as cloud
cover and haze, available sunlight, and water transparency.

Satellite data preprocessing

Before classification, the satellite imagery needs to be
preprocessed to remove atmospheric and other surface ef-
fects. Atmospheric correction was performed with Sen2Cor
processor v2.8 (Main‐Knorn et al., 2017). Sen2Cor performs
the atmospheric, terrain, and cirrus correction of S2 Level‐
1C Top‐Of‐Atmosphere to derive a Level‐2A Bottom‐Of‐
Atmosphere reflectance product. The cloud and/or shadow
layers produced by Sen2Cor for each image were used to
mask out clouds and their shadows. Shadows on water are
difficult to map and Sen2Cor's overall cloud and/or shadow
layer accuracy has been recently reported to be 84%
(Baetens et al., 2019), that is, some minor artifacts related to
clouds or shadows could still be present in the classification.
Sun glint was removed with the method described in Lee

et al. (1999). Sun glint is a serious confounding factor for
the mapping of benthic features because the component of
the satellite‐received signal from the water surface can be
much greater than the signal relative to subsurface features.

Auxiliary input layers

The core input data for the SAV classification are the
water subsurface reflectance from preprocessed S2 im-
agery. However, to increase classification model robustness,
generality, and transferability in space and time, several
auxiliary datasets have been derived to be used together
with the reflectance data to train the ML model and predict
SAV. The following auxiliary layers were derived:

(a) Satellite‐derived bathymetry (SDB) at 10m spatial reso-
lution from best available S2 imagery from 2018 to 2020
for the entire Swedish shallow coast (<10m depth).

(b) Feasibility layer derived from best available S2 imagery
from 2018 to 2020 with four classes: (1) land, (2) optically
deep water, (3) optically shallow water with good visi-
bility (covering 2560 km2), and (4) optically shallow water
with potentially good visibility (covering 1300 km2). The
feasibility layer is a byproduct of the SDB retrieval and
basically describes where SDB retrieval was successful
(optically shallow areas) and where it failed (land and
optically deep waters). The depth limits of shallow
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FIGURE 1 Area of interest along the shallow Swedish coast. The nationwide
submerged aquatic vegetation map was produced for all of the regions
shown in this overview, and the cloud‐based application allows mapping of
these coastal regions. Before the analysis, the shallow coastal zone of Sweden
was divided into 54 regions, mainly for reasons of data handling. Red
numbers denote areas where independent ground‐truth data were collected
along the Swedish NW coast (1), in Kalmar Sound along the SE coast (2),
and in the Bothnian Bay along the Swedish NE coast (3) using drop video and
drone images
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waters vary, depending on the quality of the S2 input
imagery and the water quality during satellite image
acquisition. Therefore, we produced two shallow water
classes. The class shallow water with good visibility de-
scribes all areas where we had exceptionally good visi-
bility in the imagery used for producing the SDB; the
class optically shallow water with potentially good visi-
bility indicates areas where we found the bathymetric
retrievals to be uncertain with the available imagery,
mainly owing to environmental conditions, but for which
better imagery might become available in future. Hence
the feasibility layer depends strongly on the S2 input
imagery.

(c) Depth‐invariant indices (water column correction) based
on S2 reflectance to remove the influence of depth
(attenuation) from spectral data indices (Stumpf et al.,
2003).

(d) Convolutions (filters) calculated from S2 subsurface re-
flectance to include the geospatial context with different
window sizes (50–500m).

SAV mapping

Machine learning. The backbone of the SAV mapping
method is a light gradient boosting machine (LGBM; Ke
et al., 2017), which is a freely distributed, open source
gradient boosting framework for ML originally developed by
Microsoft. The LGBM was chosen because it is a powerful
and efficient technique for building predictive models; the
training process is fast, additional training polygons can be
added easily at any stage, and the model can be applied to
very large datasets.

Training data collection. The key to achieving good results
with any ML algorithm is the quality and amount of sample
data (training data) used to train the model to make pre-
dictions. We used more than 30 000 labeled polygons and
points, containing representative characteristics of the three
habitat classes (a) SAV, (b) unvegetated soft substrate (sand),
and (c) unvegetated hard substrate (rocks) distributed along
the entire shallow Swedish coast. Experienced satellite
remote‐sensing experts delineated the training samples,
based on photointerpretation, with the help of flight or-
thophotos. In areas with relatively high water clarity, dense
eelgrass meadows, and a clear contrast between SAV and
the underlying substrate, it was easier to extract good
training samples than in waters with high turbidity and
more patchy SAV growth. More than 16 000 polygons were
extracted for SAV (~244 km2), 12 000 for sand (~324 km2),
and 8000 for the rock habitat types (~122 km2). For each
region, a separate model was trained; that is, we had
54 different predictive models. The trained LGBM models
achieved a classification accuracy of approximately 97%
on a test dataset, which contained randomly selected 10%
of the training dataset that was set aside for accuracy testing
at the beginning and not used in the training of the ML
model.

Trained predictive models were applied to all preselected
S2 images. After the SAV mapping was conducted for all
54 regions, sieving was run on the habitat classifications to
remove all objects smaller than 8 pixels. In addition, all maps
were checked for artifacts at region borders and, if needed,
the respective LGBM model was updated and rerun to
derive a coherent SAV map for Sweden.

Quantitative evaluation of the SAV map. In 2019, ground‐
truth data were collected from 10 shallow soft substrate sites
along the northwest (NW) Swedish coast to assess the ac-
curacy of classifications based on 2019 satellite images and
the relative SAV areal distribution. A standard GPS (Garmin
GPSmap64) with relatively low precision (±3–4m) was used
for the data collection. Because these data were not ideal to
assess the accuracy of satellite image classification, we
carried out a second set of accuracy estimates using ca.
200–400 random points generated from drone classi-
fications as ground‐truth data. To obtain estimates from the
Swedish east coast (Baltic Sea), we carried out new satellite
image classification of selected areas in 2020, which were
evaluated with ground‐truth data collected the same year
and month. The datapoints were collected at random using
RTK‐GPS (Trimble Geo7X) with a precision of ±20 cm.
Only field data were used to estimate the satellite classi-
fication accuracy for this area. In Kalmar Sound, along the
Swedish SE coast, four shallow soft substrate sites were
assessed; in the Bothnian Bay along the Swedish NE coast,
one site was tested (Figure 1). At all sites, we also classified
SAV and unvegetated soft substrates using high‐resolution
drone images for comparison. At each site, ca. 50–100
ground‐truth data points were collected using drop video
with a life view (SeaViewer) or an aquascope from the shal-
lowest part of the bays to the maximum depth distribution
of the vegetation. Dominating vegetation and substrate
were visually estimated within an area of approximately
1–5m2. Drone images were collected with a commercial
drone with a digital RGB camera (DJI Phantom 4 Pro) and
converted into georeferenced ortho mosaics where SAV and
unvegetated soft substrates were classified using GIS soft-
ware (ArcGIS Pro; e.g., J. P. Duffy et al., 2018; Husson
et al., 2016).

The accuracy of the satellite images was assessed within
the shallow area at each site identified by the feasibility layer
of the analyses, and a confusion (error) matrix of accuracy
was estimated using the ground‐truth data (e.g., Olofsson
et al., 2014). Based on the confusion matrix, the producer,
the user, and total accuracies are estimated. The first dem-
onstrates for each class the probability that a randomly
chosen point in field has the same class value on the map.
The user accuracy demonstrates the probability that a ran-
domly chosen point on the map has the same class value in
the field, and the total accuracy is computed by dividing the
total number of correctly classified pixels by the total
number of reference pixels.

To assess the precision of SAV areal estimates from
satellite classifications, we used the drone classified SAV as
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“references classification” (Olofsson et al., 2014) and
compared both the total area and the areas overlapping
with the drone classified areas to obtain estimates of
“correctly” (i.e., satellite classified SAV overlapping with
drone classified SAV) and “incorrectly” (i.e., satellite
classified SAV found outside of drone classified SAV)
classified areas. This comparison included the whole area
analyzed in the drone classification also when it included
areas outside the optically shallow classes described in
the feasibility layer.

Cloud‐based SAV mapping application

Software implementation. The whole mapping workflow
from S2 image selection, preprocessing, ML model training,
mapping, and visualization (as presented in the previous
sections) was combined in a cloud‐based, semi‐automatic
SAV mapping application (prototype) that enables users
without experience in satellite data processing to produce
their own up‐to‐date SAV classifications (Figure 2). The SAV
mapping application uses spatial divisions encompassing

Integr Environ Assess Manag 2022:909–920 © 2021 The AuthorsDOI: 10.1002/ieam.4493

FIGURE 2 Cloud‐based SAV Mapping application combining Copernicus Sentinel‐2 imagery and novel machine learning techniques. Top: Visualization
interface of the application; bottom: dashboard with overview of mapping project status. SAV, submerged aquatic vegetation
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54 predefined regions (Figure 1) with the pretrained ML
models as a starting point. Via a graphical user interface
(GUI) in the frontend, the user is guided through the map-
ping workflow and, once the input image is selected and the
preprocessing done, the ML model needs to be trained with
new data from the area of interest to account for the con-
ditions in the S2 image to be classified. The application al-
lows the collection of training polygons directly on the
frontend interface; alternatively, predefined polygons in
standard GIS formats can be uploaded. These training pol-
ygons are stored in a database and can be accessed and
modified later again. Once training samples are ready, the
ML model can be run and, as soon as the classification is
completed, the result is displayed on the GUI with the
option of overlaying with in situ observations.

System architecture. The architecture is based on micro-
services and cloud services, which makes the system highly
scalable and portable. The state of user projects, processing
jobs, and output layers are stored in a relational database
and accessible through an authenticated representational
state transfer (REST) application programming interface
(API). This backend communicates with the Containerized
Cloud Compute API, which manages the compute jobs on
the ICE Data Center Kubernetes cluster. Processing jobs,
initiated on the frontend by users, independently upload

their results to object storage and register them with the
open‐source raster layer Terracotta service, so they become
available in the web interface. Both Kubernetes cluster and
object storage scale easily for regular usage and handle
compute and, respectively, storage in small, isolated units,
such that projects do not interfere with each other and the
system is very resilient to any failures. With a large number
of resources available on the cluster, many tasks can be
executed simultaneously. Results from the processing are
stored as Cloud‐optimized GeoTIFF files in ICE Data Center
object storage and served to the web map via a Terracotta
web map tiles API. All public interfaces are protected
against unauthorized access by industry‐standard author-
ization flows and the use of short‐lived, rotating access to-
kens. Internal interfaces are contained in a closed network.
Web connections are TLS encrypted (HTTPS).

RESULTS

Nationwide SAV map

It was feasible to map an area of 3860 km2 of the Swedish
coast with S2 imagery. In all, 1550 km2 (41% of total area)
were mapped as SAV, 1740 (45% of total area) and 530 km2

(14% of total area) as soft and hard substrates, respectively.
This number relates to the two shallow classes delineated in
the feasibility layer, for which it is feasible to see the seabed
substrate in S2 imagery. From available coastal map data
(sea chart), the estimated total area that is shallower than
10m is reported to be 9300 km2 (Naturvårdsverket, 2006).
Almost all (99%) of the S2 derived data within the shallow
classes of the feasibility layer is from 0 to 6.5m deep
(min 0m, max 29.7m, mean 0.7m). Approximately 57% of
the national water surface between 0 and 3m deep is cov-
ered by the analysis. This is probably an underestimation of
the coverage of the shallow coastline, because the coastal
map data are not highly precise and tend to underestimate
the depth to embrace a precautionary approach vis‐à‐vis
maritime traffic.

Quantitative evaluation of satellite image classification
accuracy

Results relative to the Swedish northwest coast. Satellite
classifications of underwater vegetation in 10 shallow bays
along the Swedish NW coast in 2019 exhibited relatively
good accuracy of SAV in the shallow parts, particularly when
using drone‐generated, ground‐truth points, but missed a
large proportion of deeper SAV classified with drone images
during the same summer. On average, 50.5% of SAV was
missed in the satellite classification (range 19%–82%;
Figure 3A). A comparison of the images revealed that the
missed SAV was found mainly in the deeper (3–6m) part of
the bays, where the “feasibility layer” of the satellite classi-
fication excluded the deeper parts from the analyses
(Figure 4). In contrast, satellite classification was accurate in
classifying areas with SAV, because the percentage of
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FIGURE 3 Estimated areal distribution of SAV from drone and satellite
images. Classified area of submerged aquatic vegetation (SAV; ha) using
drone and satellite images in (A) 10 shallow (0–6m) soft sediment areas along
the Swedish NW coast in July–August 2019, and (B) from four soft sediment
areas in Kalmar Sound (Kalmar 4–7) along the SE coast, and one area in the
Bothnian Bay (Bothnia 1) along the Swedish NE coast in 2020. Correct
satellite classification denotes overlapping with drone classified SAV;
incorrect denotes areas outside drone classified SAV. SAV, submerged
aquatic vegetation
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incorrect classification (i.e., incorrectly classifying un-
vegetated substrate as SAV) was less than 6% at most sites
(Figure 3A).
The accuracy estimates of satellite classifications in the

feasibility layer in the shallower part of the bays, using field‐
based ground‐truth data, revealed high user accuracy for
SAV (on average 97% &; range 87%–100%); that is, it rarely
classified unvegetated substrate as SAV. However, the
producer accuracy was much lower (on average 47%; range
27%–68%), suggesting that it often classified SAV as un-
vegetated substrate. This resulted in lower total accuracy
than with the drone classification (on average 49% and 86%,
respectively; Figure 5A). However, using the drone classi-
fications as ground‐truth data, the total accuracy was much
higher (on average 77%; range 64%–89%) and more similar
to the accuracy obtained in the drone classification
(Figure 5A). Thus, along the Swedish NW coast, where the
water quality is relatively good and the vegetation was do-
minated by dense eelgrass meadows, the accuracy of the
satellite classification was relatively high within the shallow
part of the bay, where the feasibility layer allowed satellite
classification.

Results relative to the Swedish east coast. Similar to the
Swedish NW coast, the satellite classifications of four

sites in Kalmar Sound along the Swedish SE coast
missed most of the SAV, primarily in deeper areas outside
the shallow classes of the feasibility layer. On average,
35.3% of SAV detected in the drone classification was
missed in the satellite classification (range 26%–51%;
Figure 3B). In addition, and in contrast to the Swedish
NW coast, a large and variable proportion of SAV was
incorrectly classified in the satellite image (incorrectly
classifying unvegetated substrate as SAV; on average
31.2%; range 1%–77%). In the Bothnian Bay in NE Sweden,
the satellite image missed a very large proportion of the
SAV within the feasibility layer of the bay (72%), whereas
the incorrect classification was proportionally smaller (17%;
Figure 3B).
The accuracy of the satellite image within the shallow

areas of the feasibility layer was relatively high in Kalmar
Sound (average total accuracy of 60%), although it revealed
a large variation (27%–81%) and the average user and pro-
ducer accuracy for SAV were 77% and 68%, respectively.
The corresponding accuracy of the drone classification for
the same sites were on average 77%, 79%, and 81%, re-
spectively (Figure 5B). The total accuracy of the satellite
image within the shallow lagoon in the Bothnian Sea was
also relatively high (63%) but lower than the total accuracy of
the drone images (85%; Figure 5B).
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FIGURE 4 Example of classified habitats from drone and satellite images 2019 at Gåsö (1A–C) Lindholmen (2A–C) in NW Sweden. (A) Orthomosaic of drone
images, (B) classified distribution of eelgrass (Zostera), perennial drift algae (Fucus), widgeon grass (Ruppia), and bare substrate from drone images, showing
the ground‐truth data as points, and (C) classified distribution of SAV, unvegetated soft and hard substrate from satellite images showing the ground‐truth data
as points. Please note that similar colors are used for different habitats in panel 1B and C. Note that the satellite classification of SAV at Lindholmen misses the
eelgrass habitat in the deeper part of the bay because the limitation of the feasibility mask. At Gåsö, this problem was much less pronounced. SAV, submerged
aquatic vegetation
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DISCUSSION

SAV spatial assessment

Quantitative evaluation of the accuracy of the satellite
image classification showed encouraging results and iden-
tified issues with the feasibility layer used that warrant some
further methodological development. Using independent
field data collected with drop video and aerial drones to
assess the accuracy, we found relatively high accuracy in
classifying SAV in shallow soft substrate areas, particularly
along the Swedish NW coast (average total accuracy 77%),
where the water quality is relatively high with dense and
well‐defined eelgrass meadows often growing down to 5m.
For these areas, it was also relatively easy to extract good
training samples for the ML model, which have contributed
to the good results. Previous studies evaluating SAV in
smaller areas with Sentinel‐2 imagery usually report total
accuracies of >80% in clear, shallow waters (Rowan &
Kalacska, 2021). For areas with high water clarity and still
dominant but more fragmented eelgrass growth caused by
the higher wave energy (e.g., Kalmar Sound), it was more

difficult to map SAV with the spatial resolution (10 m) of the
S2 satellite images. This was particularly observed if a rather
small area is assessed (as in the Kalmar sites) and may ex-
plain the lower total accuracy in the classification (60%) and
the large proportion of unvegetated substrate incorrectly
classified as Q8 SAV (on average 31%). Also here, a rela-
tively large proportion of the deeper vegetation was missed
in the satellite classification. For such areas with fragmented,
patchy growth, it might be useful to introduce a “dense” and
“sparse” SAV classes into the ML model to differentiate
between different growth densities. Currently, the ML
model assigns pixels into “hard” classes, that is, either SAV
or unvegetated substrate. Mixed S2 pixels, for example,
patchy or less dense SAV mixed with unvegetated areas
where the underlying substrate is spectrally dominant, will
be classified as unvegetated.

Most challenging was the mapping in Bothnian Bay in NE
Sweden, where water clarity is substantially lower than the
other areas. In turbid waters, it is harder to isolate the plant
signal from the overall reflectance of the water column, be-
cause the presence of optically active material (i.e., plankton,
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FIGURE 5 Total accuracy of classification of SAV from drone and satellite images. Estimated total accuracy from classification of SAV and unvegetated areas
using drone images or satellite images in (A) nine shallow (0–6m) soft sediment bays along the Swedish NW coast in July–August 2019, and (B) from four soft
sediment areas in Kalmar Sound (Kalmar 4–7) along the SE coast, and one area in the Bothnian Bay (Bothnia 1) along the Swedish NE coast in August–
September 2020. Accuracy was estimated using ground‐truth data consisting of ca. 50–100 field points per site obtained with drop video or aqua scope (Drone
and Satellite 1 estimates). Along the Swedish NW coast, an additional estimate was carried out for the satellite classification using 186–425 random points
generated from drone classification as ground‐truth data (Satellite 2), which should provide higher accuracy estimates
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sediment, organic molecules) affects the scattering and
absorption of radiation, confounding the signals and dimin-
ishing the macrophyte contribution to the total signal meas-
ured by the satellite (Kirk, 1994; Malthus, 2017; Silva
et al., 2008). The coastal waters in Bothnian Bay are brackish,
and the vegetation consists of a mixture of different fresh-
water species with different colors, densities, and growth
forms. This result in low contrast with the underlying sub-
strate, making it difficult to both discriminate the SAV signal
from the substrate in the relatively large pixel size (10 m) of
the satellite imagery (Figure 6) and to define good training
data for the ML model. Another issue in Bothnian Bay is the
later seasonal development of the submerged vegetation
communities that generally coincides with a period of lower
water clarity caused by phytoplankton blooms, which again
impede satellite‐based mapping. In summary, such con-
ditions are very challenging to derive coverage SAV from
satellite imagery, which explains why more than 70% of the
vegetation identified in the drone image was missed in the
satellite classification at this site. More studies are needed to
assess if this is a general problem in this region.
We mapped 1550 km2 of SAV on the Swedish coast using

S2 satellite imagery from 2019 to 2020. This is probably an
underestimation because the area mapped covers mainly
areas down to 2–3m deep, and SAV detection down to the
lower growth margins was not feasible with the satellite‐
based method (see the next section on the Feasibility layer).
In a recent report, the combined seagrass and rockweed
area was predicted to be 1635 km2 for Sweden, based on
data from existing literature, databases, and models
(Frigstad et al., 2021). The HELCOM metadata catalog
(http://metadata.helcom.fi/) estimates the seagrass area
for Sweden at 4640 km2. With the spatial resolution of

S2 imagery and the method applied, it was not feasible to
discriminate different species; currently, the method quan-
tifies presence/absence of SAV. However, by integrating
multitemporal S2 imagery in the workflow and capturing
phenology patterns (e.g., Wolf et al., 2017), there is some
potential to map different species groups if the stands are
large enough and combined with information on substrate
types; however, this remains to be investigated, similar to
capturing population parameters such as shoot density,
percentage covered, or biomass.
Potential further improvements could be achieved by

training the ML model with additional training samples,
specifically covering areas that did not perform well, based
on in situ data, drone classifications, and local expert
knowledge. However, it must be recognized that optical‐
based technologies using satellites alone only achieve good
results in mapping SAV as long as benthic visibility is given
(optically shallow waters); alternatively, other techniques
should be envisaged for quantifying SAV.

Feasibility layer

The feasibility layer used in the analysis ensured that
classification was only carried out at water depths in which
the substrate was visible (optically shallow waters), based on
the S2 imagery used for the mapping. As such, the feasibility
layer sets the borders for a reliable and repeatable habitat
classification. All other areas are either optically deep,
owing to a range of influences, such as depth, bad visibility
and/or high turbidity, benthic substrate spectrally in-
separable from SAV, or frequent disturbance from ships.
This limited the analysis of the shallower portions of the
habitats (at depths less than approximately 3m on the
Swedish NW coast), excluding the deeper part of the SAV.
Thus, the relatively high accuracy obtained in the classi-
fication is only representative for the shallow part of the
bays. For the Swedish NW coast, on average, 50% of the
total vegetation identified in the drone images was missed
by the satellite image classification because of this re-
striction, resulting in severe underestimates of the available
vegetation. The main limitation of using S2 for SAV mapping
is that, often, the entire area to the lower depth margins of
eelgrass is not captured. The depth limit is a key indicator to
assess the environmental status for several international di-
rectives and defined as the deepest water depth where
eelgrass grows. With drone images, we were able to map
SAV in slightly deeper waters, which is related to the lower
flight height (no atmospheric influence) and sensor per-
formance (better signal‐to‐noise ratio) as compared with S2.
Moreover, drone images are typically taken on a day with
very good water conditions (high water clarity, low turbidity,
calm weather conditions), which are required to achieve
high overall accuracy (Nahirnick et al., 2019). To close
the gap between the optically shallow areas mapped by
satellites and the lower depth limits of SAV at scale,
satellite‐based mapping could be combined with species
distribution modeling based on geophysical and environ-
mental factors that influence eelgrass occurrence (e.g.,
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FIGURE 6 Example of classified habitats from drone and satellite images
taken in 2020 at the site Bothnia 1 in the Bothnian Bay, NE Sweden. (A)
Orthomosaic of drone images, and (B) classified distribution of SAV and bare
substrate from drone images (filled colors) and satellite images (colored
borders), showing the ground‐truth data as points. The SAV consists of a
mixture of the limnic seagrass species Potamogeton spp., Vaucheria sp. and
Myriophyllum spp. SAV, submerged aquatic vegetation
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Schubert et al., 2015; Staehr et al., 2019; Virtanen
et al., 2018). The issues with the feasibility layer, the chal-
lenges with the patchy distribution of SAV in Kalmar Sound,
and the poor water quality in Bothnian Bay are limitations
that should be further explored and addressed in the de-
velopment of the satellite classification method. Still, within
the shallow portions of the bays included in the feasibility
layer, the accuracy was relatively high and, at least for the
Swedish NW coast, the estimated areal distribution of SAV
was quite consistent with SAV polygons obtained from the
drone classifications (e.g., Figure 4). User accuracy for SAV
was on average >90%, with a small proportion of un-
vegetated areas incorrectly classified as SAV, resulting in a
correct, but conservative, map of SAV within the shallow
areas of the bays. Thus, within this shallow feasibility layer,
which can be fixed between years, the semi‐automatic ap-
proach to classifying SAV presented here could produce
reliable estimates of SAV useful for monitoring, for example,
annual changes in the areal distribution of vegetation along
the coast. Many of our valuable habitats, such as lagoons,
shallow bays, and mudflats, are within this feasibility layer.
These shallow habitats are particularly susceptible to dif-
ferent anthropogenic activities, such as coastal exploitation,
dredging, leisure boating, etc. (e.g., Eriander et al., 2017),
and are therefore specifically important to monitor. Fre-
quent and consistently acquired S2 imagery integrated in a
semi‐automatic method can thereby distinguish between
chance variation and true change in SAV distribution to also
detect smaller changes (<10%; Schultz et al., 2015). Other
methods, such as drone‐image analysis, habitat modeling,
or sonar technique methods, may be more appropriate to
monitoring SAV distribution along the deeper areas, in
turbid waters, or in areas with a more fragmented dis-
tribution of the vegetation, and could be combined with the
satellite remote‐sensing approach.

CONCLUSIONS AND OUTLOOK
In this project we demonstrated the feasibility of com-

bining Copernicus S2 imagery, novel ML techniques, and
advanced data processing for large‐scale, high‐resolution
mapping of the SAV distribution along the Swedish coast.
The entire workflow was successfully integrated into the first
prototype of a cloud‐based, semi‐automatic SAV mapping
application, which makes it easy for satellite nonexperts to
map SAV from up‐to‐date satellite observations. With this
approach, a correct but conservative SAV distribution map
has been derived with relatively high accuracy for clear,
shallow areas (<3m depth) and well‐defined SAV stands.
These shallow areas could be fixed and serve as baseline
areas, where regular monitoring with up‐to‐date S2 imagery
can reveal changes in the observed SAV distribution.
However, the project also revealed that, for vast shallow

areas, turbidity obscures the signal from benthos and sub-
strate and thereby reduces the accuracy with which S2 im-
agery can be applied to estimate SAV, and in particular
lower depth margins, or completely prevents the satellite
from seeing the seabed. This limitation could be reduced

and accuracy improved by integrating complementary ap-
proaches, such as in situ observations, drone image analysis,
habitat distribution modeling, or sonar techniques, for in-
stance in the form of a hierarchical framework (Neckles
et al., 2012).

The Swedish Agency for Marine and Water Management
is planning to continue the development of a national
method until the end of 2022, with a focus on further im-
proving interpretation, establishing the method in all coastal
counties, and enabling the monitoring of the status of
shallow habitats with quantitative measures. To achieve full
efficiency, the method needs to include a further step that
enables monitoring and classification of environmental
status. Status is the functional and legal pillar that forms the
basis for reporting, assessment, and evaluation at national
and international levels. Scalable and automated solutions,
by combining up‐to‐date satellite imagery, ML, and cloud‐
based technology coupled with ground surveys can revo-
lutionize environmental management and monitoring of
vegetation status in shallow marine areas.
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