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Detecting changes in population trends depends on the accuracy of estimated

mean population growth rates and thus the quality of input data. However,

monitoring wildlife populations poses economic and logistic challenges

especially in complex and remote habitats. Declines in wildlife populations

can remain undetected for years unless effective monitoring techniques

are developed, guiding appropriate management actions. We developed

an automated survey workflow using unmanned aerial vehicles (drones)

to quantify the number and size of individual animals, using the well-

studied Scandinavian harbour seal (Phoca vitulina) as a model species. We

compared ground-based counts using telescopes with manual flights, using

a zoom photo/video, and pre-programmed flights producing orthomosaic

photo maps. We used machine learning to identify and count both pups

and older seals and we present a new method for measuring body size

automatically. We evaluate the population’s reproductive success using drone

data, historical counts and predictions from a Leslie matrix population model.

The most accurate and time-efficient results were achieved by performing

pre-programmed flights where individual seals are identified by machine

learning and their body sizes are measured automatically. The accuracy

of the machine learning detector was 95–97% and the classification error

was 4.6 ± 2.9 for pups and 3.1 ± 2.1 for older seals during good light

conditions. There was a clear distinction between the body sizes of pups and

older seals during breeding time. We estimated 320 pups in the breeding

season 2021 with the drone, which is well beyond the expected number,

based on historical data on pup production. The new high quality data from

the drone survey confirms earlier indications of a deteriorating reproductive

rate in this important harbour seal colony. We show that aerial drones and

machine learning are powerful tools for monitoring wildlife in inaccessible

areas which can be used to assess annual recruitment and seasonal variations

in body condition.
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GRAPHICAL ABSTRACT

Overview of the automated work-flow for wildlife surveys, from drone flights to image analysis. Drones are used to collect hundreds of images
that are converted into orthomosaics. Thereafter, animals are identified by machine learning (ML) and their body sizes measured.

KEYWORDS

harbour seals (Phoca vitulina), machine learning (ML), wildlife conservation,
population dynamics, somatic growth, marine mammal monitoring, drone
monitoring, wildlife management

Introduction

The rate of population increase is a pivotal parameter
in analyses of population dynamics, and monitoring
programs are designed to estimate changes in abundance
as accurately as possible (Sibly and Hone, 2002; Teilmann
et al., 2010). Reliable estimates of population trends are
required to implement appropriate management actions,
such as hunting or protective measures. Accurate estimates
of population parameters are needed for early detection of
changes in population growth rate under environmental
stress (Harding et al., 2007; Hilde et al., 2020). In vulnerable
and declining species, high quality data used to estimate the
population rate of increase, or decrease, is vital for informed
evaluations of extinction risks by population projection
models and for red-list classifications. Another key factor is
the length of the time series, where long-term monitoring
programs of populations permit assessment of causes and
effects and the natural variation in abundance among years
(Silva et al., 2021).

Marine mammal populations are sensitive to
overexploitation, which can be explained by their limited
intrinsic rate of increase and difficulties in assessing changes
in population sizes in time (Lotze et al., 2017). As many
marine mammal populations today recover from historical
low abundances, demands for increased hunting impose an
urgent need to develop techniques with shorter lag phases
between observation and management actions in order to
avoid a new era of overexploitation. The inaccessible habitat
and logistic difficulties in monitoring wild marine mammals
introduce a sampling error in abundance estimate, which
leads to a lag between population decline and detection
(Svensson et al., 2011). The Scandinavian harbour seals
(Phoca vitulina) have attained historical population sizes
after a century of overharvest and epidemics (Silva et al.,
2021). They inhabit the Kattegat-Skagerrak coasts and the
Baltic Sea (where a smaller population is found), thus
they occur in the territorial waters of Sweden, Norway
and Denmark. The abundance of harbour seals has been
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monitored since 1978 by counting the number of seals
hauled out on land during peak moult in late August by
small aeroplanes.

Different sex and age classes of harbour seals spend
different amounts of time on land, for example does subadult
seals haul-out more than adult seals, and thus, when the
population age structure changes so will the proportion on
land (Härkönen et al., 1999). About 65% of the harbour
seal population hauls-out on land in the peak moulting
season when the population rate of increase is stable
(Härkönen et al., 2002; Teilmann et al., 2010). Exponentially
growing populations have an inherent “stable age-structure”
(Caswell, 2001; Härkönen et al., 2002). However, when the
population age structure changes so will the proportion of
seals on land. Most populations will eventually be affected
by environmental and density-dependent factors, such as
decreased food availability and lack of haul-out sites, and
the population size will fluctuate (Sibly et al., 2005; Sæther
et al., 2016). As the population approaches carrying capacity,
population growth declines, age structure shifts to older
animals and the average haul-out behaviour may change
(Härkönen et al., 1999). In fluctuating populations estimates
based on traditional aeroplane surveys during moult, need
to be complemented by additional techniques to estimate
cohort strength. One limitation of the aeroplane survey is
that it mainly monitors cohorts of the population older than
1 year, since pups do not moult the first year and thus
spend little time on land during the survey period (Härkönen
et al., 2002) thus additional techniques for estimates of annual
reproduction are required.

Recent observations show that harbour seal subpopulations
in the Kattegat-Skagerrak have different somatic growth rates
and population growth rates (Harding et al., 2018; Silva et al.,
2021). The causes behind these differences remain unclear
but are likely linked to food limitation in some regions. The
well documented population of harbour seals in the Kattegat-
Skagerrak provides an opportunity to study the mechanisms
of population regulation in marine mammals in more detail.
Quantifying annual changes in the reproductive rate of females,
and the body condition of pups would provide important clues
and could disclose cause-effect mechanisms behind observed
changes in trends. However, estimating annual pup production
and condition of pups is very labour intensive with traditional
methods involving catching pups in nets and observing branded
seals by telescope in topographically complex archipelagos.
Thus, development of new methods are required to complement
traditional survey techniques in long-term monitoring, and
to increase our understanding of basic processes in the
dynamics of populations.

Wildlife surveys using drones are promising techniques
currently being developed for monitoring of animal abundance,
trends and behaviour for many species (Colefax et al., 2018;
Hodgson et al., 2018; Eikelboom et al., 2019; Lyons et al., 2019;

Infantes et al., 2020; Gray et al., 2022). Drone observations also
provide new possibilities for documenting animal behaviour as
well as landscape features, in particular for species sensitive
to human activity or aggressive to humans (Inman et al.,
2019; Infantes et al., 2020), or at sites that are difficult to
access (Dickens et al., 2021; Palomino-González et al., 2021).
Although drone surveys collect detailed information rapidly,
they still do not solve existing data analysis limitations. In
particular, manual counting of animals in imagery is time
consuming and inefficient (Linchant et al., 2015; Hodgson
et al., 2018). However, novel advances in automated counting
using machine learning approaches can help to overcome these
inefficiencies (Linchant et al., 2015; Corcoran et al., 2021;
Tuia et al., 2022). Automated methods have the potential to
reduce the number of animals missed in surveys and the
time taken to complete image analysis compared to manual
methods, improving both the accuracy and efficiency of
detection (Rey et al., 2017; Hodgson et al., 2018). Technological
advances in machine-learning automated detection methods,
drone platforms and sensors have led to successful detection of
individual animals in a wider range of species than previously
possible (Linchant et al., 2015; Hollings et al., 2018). Automated
detection and counting can speed up population assessments
for example in birds (Chabot and Francis, 2016; Hodgson
et al., 2018), marine mammals (Seymour et al., 2017; Gorkin
et al., 2020) and terrestrial mammals (Chrétien et al., 2016;
Kellenberger et al., 2018).

Although automated counting of animal populations is
becoming routine, most approaches do not include the
measurement of animal body sizes. There are two main methods
used to measure body size and body size changes in the
wild: capture-mark-recapture of animals or measurements of
animal carcasses. Capture-mark-recapture of wild animals is
both labour intensive and disruptive to wildlife (Bradshaw
et al., 2003) and typically only provides information for a small
number of individuals. When measuring carcasses, obviously,
more detailed information on body size and condition can
be acquired without the risk of causing stress or injury to
living animals but samples are not always representative of the
population except for during outbreaks of extremely virulent
diseases (Harding et al., 2018). Photogrammetry methods for
building 2D models of live elephant seals (Shero et al., 2021)
or 3D volumetrics of a limited number of free ranging whales
(Christiansen et al., 2019) and grey seals, have recently been
developed to measure body mass (Alvarado et al., 2020). But
simple non-invasive methods for rapidly estimating body size
for a large number of individuals have to our knowledge not
been performed before.

In this study, we (1) compare the efficiency and accuracy of
two drone survey methods using manual and pre-programed
flights, relative to land-based telescope surveys to count seal
pups; (2) assess the accuracy of aerial drones in combination
with automated software for counting and measuring the body
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sizes of pups and older harbour seals; and (3) evaluate the
current pup production in the light of historical monitoring data
and discuss the implications of the findings for the dynamics
of the population.

Materials and methods

The archipelago in Kosterhavet national park, on the
west coast of Sweden, is home to a colony of about 3,000
harbour seals (Silva et al., 2021). The population has been
surveyed annually during the late summer moult (when a
stable and high proportion of the population is on land) by
small aeroplanes since 1978 as part of a larger survey of
the entire Kattegat-Skagerrak population (Heide-Jørgensen and
Härkönen, 1988). These late summer moult surveys provide
data for estimates of changes in total population size over time
and have recently indicated a lower, but still positive population
growth rate than historically observed. To better understand
the causes behind this recent decline, we set out to perform
a complementary, more detailed survey of the pup production
during the early summer reproductive season in 2021. The goal
was to critically evaluate several survey methods and to estimate
the reproductive output, see (Figure 1).

We surveyed nine haul-out sites by drones and telescope
during the pupping season (June 13–21), and autumn
(September 12–15) of 2021, focusing on locations identified
as major breeding sites (Figure 2A; Heide-Jørgensen and
Härkönen, 1988; Härkönen and Harding, 2001). We visited all
nine sites once on each survey day and counted the seals with
a telescope and drones, obtaining one sample per site and day
with each method. We performed observations between 14:00
and 20:00, because daily seal numbers peak at this time (Heide-
Jørgensen and Härkönen, 1988; Härkönen et al., 1999). We
identified pups of the year in June by several characteristics,
including different colour of pelage compared to older seals,
body shape, size and behaviour (Figures 2B,C). In the autumn,
we did not attempt to distinguish between pups and older seals.

Ground-based surveys using
telescopes

In 2021, we carried out ground-based counts of pups using
the same method as in previous surveys, to compare with drone
counts. We used a Swarovski ABICHT-AT-80 telescope with
flexible magnification up to x60. We observed each site for 20–
30 min. and counted pup numbers repeatedly from nearby islets
at distances up to 600 m on each survey day. In cases where
pups were positioned behind rocks, we attempted to observe the
same nursing site from a different location. We surveyed all sites
multiple times and took notes of the highest counts for each site.

We repeated this method daily until all additional counts were
lower than the daily maximum count.

To estimate historical population trends, we provide a new
large data set of pup counts by telescope (number of pups) at the
nine surveyed sites from the years 1989 to 2013. The intensity of
the survey effort using the traditional telescope count was not as
high in 2021 as in previous years, since we avoided interfering
with the drone survey, and this affected the counts especially at
complex habitats and bias the comparison of methods in favour
of drone counts. Removing the potential error in historical
data by compensating for lower fraction sighted previous years
would only strengthen our main finding of a recent decrease
in pup production.

Drone + zoom photo/video

We performed manually operated flights remotely from
islands without haul-out sites to avoid seal disturbance (Krause
et al., 2021). The flight altitude was 100 m and the vertical
distance to the seals when photographed by this method was
between 100 and 150 m. Observations were made using a
x30 optical zoom camera (DJI, Zenmuse-Z30) mounted on
a quadcopter drone (DJI, Matrice-200). The optical zoom
allowed observers to remain unnoticed by the animals while
still obtaining highly detailed photos. The drone streamed live
images to the pilot and to an assistant observer with FPV
goggles (First Person View, DJI Goggles) with a 1080p/30fps
screen definition. This arrangement facilitated the location and
identification of pups, allowing the pilot to safely navigate the
drone while the assistant focused on observations. The survey
was carried out by scanning haul out sites while recording
photos and videos with zoom camera from left to right and
zooming in on seal groups to document the presence of
pups while keeping the drone static. The resulting images
and videos were taken at 1,920 × 1,080 pixel resolution. Seal
counts were first performed manually on all photos and videos
by 3–4 persons with different degrees of experience in seal
surveys and the average and standard error was calculated from
the observations.

Drone + orthomosaics

We carried out pre-programmed flights using a DJI
Phantom-4Pro to evaluate the use of a low-cost commercial
drone (1,500 USD) with a digital RGB camera. We captured
aerial photographs in nadir position (looking straight
downward) following regular transects in pre-programmed
flights using Pix4Dcapture app. at an altitude of 40 m, resulting
in an image resolution of 1.09 cm/pixel. We designed transects
to take a sequence of photos in an exact grid net with each
photo having an 80% forward overlap and 80% lateral overlap.
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FIGURE 1

Diagram of the survey methods and workflow tested in the study. Seal surveys were performed both with traditional observations by telescope,
and by drones. Drone missions were either manually piloted, or pre-programmed. All methods resulted in estimates of the number of newborn
pups, that in turn was evaluated in terms of “pup/older seals ratio” and evaluated in the light of total population size.

FIGURE 2

(A) Map of the main haul-out sites for harbour seals in the Kosterhavet archipelago, Sweden. (B) Adult females and pups haul-out during the
peak pupping season, and a pregnant female is observed at the bottom left side. (C) Female harbour seals closely watch over their pups during
lactation, the first 3 weeks after birth. Mother-pup-pairs can be recognized from drone photos (Images from drone zoom-photo survey of
Svarta Kalvhättan, 18th June 2021).
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This altitude and flight pattern has been found appropriate for
optimally capturing estimates of abundance and occupancy in
previous studies (Baxter and Hamilton, 2018) and we observed
that the harbour seals remained on land with few signs of
being disturbed by the drone at this altitude. All images were
geolocated by the internal GPS of the drone. For each site,
acquired images (∼100) were combined into a high-resolution
image with a corrected perspective (orthomosaic) using
Pix4Dmapper (v4.7, Pix4D SA). We obtained ground Control
Points (GCPs) from a Google Satellite online map to match
positioning as closely as possible to satellite data. On each
orthomosaic, we selected 10 GCPs to match the coordinates of
the satellite image (Topouzelis et al., 2019).

The image quality of mosaics decreased when flights were
carried out in the late afternoon, due to lower light levels, which
in turn made images more blurry and decreased the probability
of automated detection (Sieberth et al., 2014). Also, if seals were
moving on land or water when the drone was collecting images,
some images became blurry (ghosting effect). Seal counts were
performed manually on all orthomosaics by 3–4 persons with
variable experience of seal surveys.

Automated detection of seals

To provide an alternative, automated count of seal numbers,
we used Picterra, an online machine learning (ML) platform
which uses a Convolutional neural network-based (CNN)
architecture for the ML object segmentation. CNN’s are Deep
Learning architectures that, among other uses, can identify and
outline predefined object classes from raster images through
patterns in pixel relations (Ren et al., 2017). This approach
is well-suited for identifying individual objects, which are
not necessarily identical but share a similar representation in
images. We trained Deep Learning models to automate object
detection with drone imagery. The software uses a version of
the U-NET architecture (Ronneberger et al., 2015), a type of
CNN, modified to allow instance segmentation, without the
need for a complex, data-hungry instance segmentation model
like Mask-R-CNN (He et al., 2017).

We developed three detectors focusing on pups and older
seals (age 1 + years) separately in June and on all seals together
(age 0 + years) in September (Figure 3). This strategy allowed
us to focus our training process on a single element per detector,
thereby avoiding confusion between classes. We used the drone
orthomosaics to train the software with approx. 100 seals for
each class by drawing polygons around the individuals. We
included a filter to remove smaller and larger objects of 0.07
and 0.55 m2 to improve performance. Each detector was trained
using 4,000 steps. The accuracy of the binary classification
model, the F1 score, was estimated as in Csurka and Larlus
(2013):

F1 =
2 ∗ Precision ∗ Recall
Precision + Recall

(1)

Here, “precision” is the ratio between false positives (FP)
and false negative (FN) classifications. “Recall” is defined as
TP/(TP+FN), where TP is the true positive rate as judged by a
human observer. The accuracy of classifications was very high;
97.14% for pups, 97.06% for older seals in June and 95.75% for
the group “all seals” in September (Table 1). After running the
detectors on the drone mosaics each seal was indicated with a
polygon and data on its position (latitude and longitude), body
area and perimeter were recorded.

Seal body size measurements

To calculate seal body sizes we used the polygons classified
by the ML for each individual seal. We automated the
measurement of seal length and width using a custom written
R function (Figure 3C; R Core Team, 2017). Within this
function, spatial polygons were plotted and analysed using
the packages “sf” and “lwgeom” with further manipulation of
the data using package “reshape2” (Wickham, 2007; Pebesma,
2018; Pebesma, 2018). To remove limbs from computation,
polygons were smoothed by Gaussian Kernel regression with
a bandwidth value of two, using the R-package “smoothr”
(Strimas-Mackey, 2020). The two most distant points of the
polygon were taken to represent the head and the tip of the
tail (n.b. not the tip of hind flippers). Polygons were divided
into two-line segments at these points. A set of points midway
between corresponding coordinate points in each line segment
were used to construct a line which followed the curvature
of each polygon. To account for the effect of smoothing, the
distance between the farthest points in the smoothed polygon
and the original polygon were added to the length of this curved
line. This value was taken to correspond to the length of the
seal from head to tail following the curvature of its body. Body
width was calculated based on the maximum distance between
the curved line and the smoothed polygon. All relevant code is
available.1

To validate the automatic calculation, we also estimated
the standard body length and width of seals manually using
classified polygons and mosaics (n = 688). The standard
body length of each seal was estimated by measuring the
straight-line distance from the head to the tip of the tail
(American Society of Mammalogists, 1967). The body width
was measured as the longest transversal distance of the seal
shaped polygons.

To calculate the error of body size measurements from
the drone mosaic, we used a dead harbour seal and 9
panels with known areas of 0.03, 0.12, 0.17, 0.24, 0.29,
0.36, 0.44, 0.58, and 0.79 m2 which were photographed
during 3 drone missions. The seal was measured manually
at ground level and then from 3 mosaics photographed

1 https://github.com/DaireCarroll2019/Seal-Lengths
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FIGURE 3

Harbour seal identification using machine learning detectors at the locality “Svarta Kalvhättan,” Sweden, on the 18th of June 2021. (A) A drone
orthomosaic map is composed of many overlapping photos. (B) Blue and green polygons indicate pups and older seals identified by machine
learning, (C,D) automatic measurement of body lengths (L) and widths (W) describe seal shape. Polygons were smoothed and split into two line
segments (red and light blue lines). Coordinate points midway between these segments were used to construct a line representing the position
of the spine. To account for the effect of smoothing, the distance between the smooth and unsmoothed polygon was added to the length of
this line to calculate seal length (long orange line). Widths were calculated based on the maximum distance between the curved line and the
smoothed polygon (short orange line).

at 40 m altitude. The manual measurements of the body
length and width of the seal were 0.98 and 0.30 m,
respectively and the corresponding automatic measurements
from the drone were 0.99 ± 0.01 m and 0.32 ± 0.01 m.
The area of the panels measured using the drones
showed a close match with the manual measurements
(F = 2277, p < 0.001, R2 = 0.99, y = 10.5x + 0.0077, see
Supplementary Figure 1).

Population size, growth rate, and age
structure

We calculated the population size and rate of increase in
the Kosterhavet region retrospectively, based on analysis of
annual aerial survey data (2003–2020, data from SHARKweb,
n.d.). Following established routines we summed observations
from individual Skerries into regions, and calculated the mean
of the two highest daily counts from each year, ignoring the
lowest count out of three (Teilmann et al., 2010). The proportion

TABLE 1 Statistics from the automatic seal detecting software.

Detector (Object) Precision (%) Recall (%) F1 Score (%)

Pups (June) 100 94.44 97.14

Older seals (June) 100 94.29 97.06

All seals (September) 94.4 97.14 95.75

The F1 Score gives the accuracy of detector classifications for pups, older and all seals
(age 1 + ) in different seasons. The probability to correctly classify a seal is given by the
“precision” and “recall,” which are used to calculate the F1 score (Eq. 1).

of pups in an exponentially growing population is given by
the age-dependent demographic rates, and can be analysed
by linear algebra in a Leslie matrix framework (Caswell,
2001). The dominant eigenvalue (λ) of the Leslie matrix
(L) represents the long term asymptotic growth rate of
the population. When a population grows exponentially
for many years it assumes a stable age distribution, with
a fixed proportion of young born every year (Kendall
et al., 2019). Historical data shows that the maximum
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TABLE 2 The age-specific demographic rates predicted for a
population under different growth conditions.

Baseline scenario Reduced growth
scenario

Growth 11% 2.80%

Age specific Pups 75% Pups 74%

Survival 01-April 89% 01-April 82%

5 + 95% 5 + 95%

Age specific fertility 0–2 0% 0–2 0%

3 38% 3 19%

4 69% 4 35%

May-26 99% May-26 50%

27 + 74% 27 + 37%

Pups/total ratio 0.2 0.14

In the baseline scenario, the Leslie matrix is parameterised to simulate an asymptotic
growth rate of 1.11 (Härkönen et al., 2002; Silva et al., 2021). In the second scenario, the
observed annual increase of 2.8% is simulated using the Leslie matrix by halving fertility
and lowering pup and subadult survival, corresponding to an asymptotic growth of 1.028
(altered values shown in bold). The line at the bottom gives the expected proportion of
pups associated with each growth scenario.

growth rate for harbour seals is 11% annually (equivalent
to: λ = 1.11), and the proportion of newborn pups in a
steadily increasing harbour seal population is approximately
20% of the total population size (Härkönen et al., 2002,
2007). These empirically well documented demographic
rates are our baseline scenario (Table 2). We also construct
an alternative “low growth rate scenario” by manipulating
the demographic rates to fit the current population
rate of increase.

To estimate the rate of increase, λ, given survey data,
we used a non-linear least squares method to fit exponential
functions to estimated total population size (P) and observed
pup numbers, (P = intercept∗eln(λ)∗Year). To estimate the
expected ratio of pups for given demographic conditions,
we assumed 50% of observed seals during moult counts
were female and that the proportion of mature females
can be calculated from the stable age structure of a Leslie
matrix. The age structured population (N) took the form:

N =



n1

n2

n3

n4

n5

n6
...

n38


(2)

Age specific birth rates (B) of female offspring
were calculated based on the age specific fertility (F)

and survival (S) values reported in Silva et al. (2021)
according to:

B = F∗S/2 (3)

Age specific birth and survival rates were assembled into a
Leslie matrix (L) according to:

L =



B1 B2 B3 B4 B5 . . . B38

S1 0 0 0 0 . . . 0
0 S2 0 0 0 . . . 0
0 0 S3 0 0 . . . 0
0 0 0 S4 0 . . . 0
0 0 0 0 S5 . . . 0
...

...
...

...
...

. . . 0
0 0 0 0 0 S38 0


(4)

We modified this matrix to simulate the observed annual
increase of 2.8%, and tweaked demographic rates to mimic
commonly observed demographic responses to food limitation
in pinnipeds (Kjellqwist et al., 1995); we applied a 50%
reduction in fertility, simulating year-skipping, and reduction
to the age-specific survival of pups (age 0) and subadult
seals (ages 1–3) (Table 2). We estimated the expected
proportion of pups given these two demographic scenarios
(Table 2) and compared them to earlier records of pup
production in the Koster archipelago and to the data from
the current study.

Statistics

We used a generalised mixed-effects model assuming a
Poisson distribution (function “glmer” of R package “lme4”)
of seal pup counts to determine whether seal pup counting
methods differed significantly (Bates et al., 2015). The model
included seal pup counts as the response variables and method
and haul-out site as independent variables, with observer and
day of survey modelled as random effects. We fit exponential
models to estimated pup and total population sizes using a
non-linear least squares method taking year as the explanatory
variable and estimated size as response variable.

We measured the length and width of each identified seal
automatically. We tested the agreement between manual and
automatic measurement by performing linear regressions for
each dimension with automatic measurements as input variable
and manual measurements as output variable. To correct for
differences in measured values between projection systems,
the parameter estimates from this linear regression were
used to apply a linear transformation to bring automatically
measured seal dimensions in line with manual measurements.
We performed data analysis and automated measurement
of polygons in R.
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Results

Survey method comparison

All methods readily identified harbour seal pups and
older seals; however, each method has different strengths
and weaknesses. The highest total number of pups (320) on
the 9 sites was observed on the 18th of June using drone
zoom-video surveys, and the highest number of pups (66)
on a single skerry was observed at the island of Våskär. We
found significant differences between the estimates depending
on survey method (F = 33.137, p < 2.2e-16) (Figure 4A).
Specifically, a post-hoc analysis (Tukey’s) indicated significant
differences between drone zoom-video surveys and all other
methods with drone video surveys generally resulting in higher
counts compared to drone zoom-photo and telescope surveys.
No significant difference was found between drone zoom-video
and orthomosaic+ML counting. As expected, differences
between haul-out sites were also significant (F = 103.968,
p < 2.2e-16).

Counting the total number of pups using drone zoom-
photos took 6.4 times longer than zoom-videos, since it was
more difficult for the analyst to keep track of the orientation and
position within overlapping photos. Counting the total number
of pups using zoom-photos took on average 22.4 ± 3 min
per site and 201.6 ± 14 min per survey day. On the other
hand, a continuous zoom-video across the survey areas took
on average 3.5 ± 1 min per site and 31.5 ± 2 min per
survey day. In contrast, counting the number of pups using
ML was the most efficient approach taking approx. 14 min
per site once the detectors were trained (11 min to build
the mosaic and 3 min to run the detector). The drone flight
time for the zoom-photo, zoom-video and mosaic surveys
was similar for all methods (8–10 min per site). Where
island topography was simple (sites 2, 3, 4, 5, 7; Figure 2A),
there was no difference in the number of pups counted by
the drone+zoom and telescopes (Figure 4B). By contrast,
when island topography was complex with cracks, large rocks
and holes, (sites 1, 6, 8, 9) counts of pups by telescope
were 45.5% lower than counts by drone zoom-photo/videos
(Figure 4B), although this difference is not expected in the
historical telescope surveys that were carried out from more
observation points.

On average, seal counting using machine learning failed
to identify 13.3 ± 3.8% and 6.4 ± 2.2% of pups and older

seals, respectively (Table 3). Orthomosaics were blurry on
the 15–16 June due to low daylight late in the evening
generating an error of 21.1 ± 6.2 and 7.6 ± 3.6 in the
detection of pups and older seals, respectively. However, when
orthomosaics were sharp, as on the 18-Jun, the accuracy was
higher, with an error of 4.6 ± 2.9 and 3.1 ± 2.1 for pups and
older seals, respectively. Swimming seals were not identified

by the detector. In addition, seals moving on land appear
blurry in the orthomosaic and were not identified by the
detector either.

Harbour seal body sizes

In June, the body sizes of pups and older seals (seals
that belong to age classes 1 +) can be clearly distinguished
in terms of body area, body area perimeter, body maximum
length and width (Table 4). We found a significant linear
relationship between body lengths measured automatically
and manually [F(1,465) = 2956, p < 2e-16, R2 = 0.864,
slope = 0.81 mm−1, intercept = 0.16 m], with a residual
standard error of 0.103 m (Figure 5A). Similarly, we found
a significant linear relationship between the two measurement
techniques for width [F(1,465) = 2609, p < 2e-16, R2 = 0.849,
slope = 0.91 mm−1, intercept = 0.06 m], with a residual standard
error of 0.032 m (Figure 5B). The estimated parameter values
from linear regressions comparing manual and automated
measurements were used to apply a linear transformation to
automatic measurements bringing them in line with manual
measurements and establishing body dimensions. Automated
measurements of body lengths and widths in June showed a clear
distinction between pups (average length of 0.69 ± 0.1 m and
width of 0.21 ± 0.04 m) and seals older than 1 year (average
length of 1.32 ± 0.19 m and width of 0.38 ± 0.05 m, Figure 5).
In September, distinct groupings were not possible and the
entire population, including all ages, had an average length of
1.19 ± 0.36 m and width of 0.36 ± 0.04 m (Figures 5A,B).
Compared to physical measurements of dead seals, average
estimates from the digital photos of live seals are several
centimetres shorter, likely due to uneven surfaces below the live
seals or lifting of their head or tail (Harding et al., 2018).

Expected number of pups

The number of pups in the Kosterhavet archipelago has
changed between 1989 and 2021. The maximum pup count has
increased from 50 in 1989 up to 320 in 2021 with a maximum
of 382 in 2013 (Figure 6A). We assumed that realised growth
rate was equal to asymptotic growth rate (λ) and fit separate
exponential growth models to survey data for moult counts
from 1989 to 2001, and 2002 to 2021 and for pup counts from
1989 to 1997 and from 2012 to 2021 (P = intercept∗eln(λ)∗Year)
(Figure 6 and Table 5). Based on moult surveys, we predicted
a λ of 1.028 for the study area between 2002 and 2020
corresponding to an annual increase in population size of 2.8%
for the study area (Figure 6). This model was used to estimate
a predicted total population of 1,136 in 2021 in the surveyed
area. The proportion of pups to the total population estimates,
which was increasing prior to 2002, has seen a sharp decrease
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FIGURE 4

(A) Comparison between survey methods implemented at 5 sites, (B) number of pups counted with telescope and drone at simple and complex
island topographies. Seal counts at islands with complex topography showed a significant difference between methods, F = 209.461, p < 0.05.
Data collected during 13 and 16 of June 2021.

from 0.43 in 2012 to 0.28 in 2021 (Figure 6B). Historically, the
ratio of pups to total counts in the Koster breeding colony has
been greater than 0.2. Prior to the last Phocine distemper virus
(PDV) outbreak in 2002, this ratio was increasing (Figure 6).

We investigated scenarios of reduced population growth by
parameterising a Leslie matrix for harbour seals. In the baseline
scenario, an asymptotic growth rate (λ) of 1.11 is achieved,
giving an expected pup/total ratio of 0.20. In the reduced growth
scenario, a λ of 1.028 is achieved, giving an expected pup/total
ratio of 0.14 (Table 2). Given the observed maximum pup count
of 320, we estimated an adult population size of 1,600 and 2,308,
assuming λ = 1.11 and λ = 1.028, respectively. It is clear from
historical data on age and sex specific haul out patterns that
the number of breeding females during pupping is larger than
the corresponding population present during moult (Härkönen
et al., 1999). Our results indicate that the decreasing proportion

of pup to moult count ratio could be accounted for by reductions
in fertility and survival of immature seals.

Discussion

We assess the accuracy and efficiency of different types
of telescope and drone surveys at counting and measuring
harbour seals during the reproductive season for estimating the
annual breeding success. Our results revealed advantages and
disadvantages among all methods tested (Figure 7). The most
accurate and time-efficient results were provided by performing
pre-programmed flights to create orthomosaics, where animals
were subsequently identified by machine learning and their
body sizes measured automatically. Drone surveys proved
to be powerful for monitoring animals in inaccessible rocky
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TABLE 3 Number of pups and older seals identified with machine learning and validated with manual inspection of the digital photos.

Pups Older seals

Date Location Count Missed Error (%) Count Missed Error (%)

15-06-2021 Galteryggen (2) 23 5 17.9 29 7 19.4

16-06-2021 Våskär (1) 46 3 6.1 51 2 3.8

16-06-2021 Flata Kalvhättan (6) 8 3 27.3 26 1 3.7

16-06-2021 Ramsökalvhamn (5) 7 3 30 17 0 0

16-06-2021 Svarta Kalvhättan 9) 23 7 23.3 43 4 8.5

16-06-2021 Vita Kalvhättan (8) 9 6 40 20 1 4.8

16-06-2021 Metareskär (7) 3 0 0 3 1 25

18-06-2021 Våskär (1) 18 4 18.2 24 3 11.1

18-06-2021 Flata Kalvhättan (6) 28 2 6.7 40 0 0

18-06-2021 Ramsökalvhamn (5) 5 0 0 7 0 0

18-06-2021 Svarta Kalvhättan (9) 32 1 3 60 0 0

18-06-2021 Vita Kalvhättan (8) 30 0 0 46 1 2.1

18-06-2021 Metareskär (7) 10 0 0 18 1 5.3

Sum/Average 276 34 13.3 384 21 6.4

Std.Err 3.8 2.2

In the column “Location” the name of the haul-out skerries and the number as indicated on the map (Figure 2) are given. The column “Pups” and “Older” gives the number of individuals
identified by the software, and the number of individuals missed. The column “Error” is estimated as the proportion of automatically detected pups to the human observers estimate. N.b.
This analysis presents data from several different days and is for evaluating the ML method and is not used for the survey of total pup numbers; the total number of pups and adults are
always performed in all colonies during the same day to avoid double counting migrating individuals.

TABLE 4 Average body sizes of harbour seals hauled out on land calculated from drone orthomosaics during pupping season in June
and September 2021.

Automatic Manual

n Area (m2) Perimeter (m) Length (m) Width (m) Length (m) Width (m)

June Older seals 251 0.37± 0.06 2.99± 0.33 1.32± 0.19 0.38± 0.05 1.24± 0.11 0.42± 0.03

Pups 242 0.11± 0.02 1.59± 0.24 0.69± 0.1 0.21± 0.04 0.69± 0.09 0.25± 0.03

September All 195 0.32± 0.06 2.73± 0.35 1.19± 0.36 0.36± 0.04 1.20± 0.15 0.39± 0.03

Body size was measured from the digital photos both automatically by machine learning and manually on the screen. Body size was expressed as surface area and perimeter of the “seal
shaped polygons” and maximum length and width (Figure 3B). Mean values in metres and standard deviation are given.

archipelagos and could be used to assess annual recruitment and
seasonal variations in body condition. This workflow provides
high-quality data, permitting early warning signs of changes in
population growth and health and could disclose cause-effect
mechanisms behind observed population growth trends. Our
approach was designed and evaluated for harbour seals but
could be applied to other wildlife species or other orthomosaic
and machine learning software.

This workflow could be easily automated because the
software used (e.g., Pix4D, Picterra and RStudio) allows
application programming interface (API) integration, which is
key to expanding the workflow to operate in a cloud-based
service, such as Google Cloud (Bisong, 2019; Shah and Dubaria,
2019). With this approach a user could upload drone images to
a cloud server where orthomosaics are built and animals are
automatically detected and measured (Malawski et al., 2020).
The server can return information on the number of seals and

their sizes. Other software with API capabilities can also be used
(ArcGISpro, Drone Deploy, DJI-Terra, etc.).

Our results demonstrate that seal pup counts for haul
out sites surveyed using drones were 45% higher than when
using ground-based telescopes. This difference was influenced
by the complexity of the topography, because most Skerries
are not flat and seals can be hidden between rocks and
thus not easily detected with a land-base telescope. Historical
telescope surveys were performed with greater effort including
more observation points, however, and can’t be directly
compensated by this factor.

Estimating wildlife population size using drones has also
been shown to be very effective in other studies. For example,
colony nesting bird counts using drones were 43–96% higher
(Hodgson et al., 2018), and snow geese counts were 60%
higher compared to land-based counts (Chabot and Bird, 2012).
Drone counts resulted in 10.6% more hippopotamuses than
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FIGURE 5

Correlations between manually and automatically performed measurements on digital photos of (A) body length and (B) width (N = 466) of
harbour seals. Frequency distribution of (C) body length and (D) body width from the automatic measurements. In June, pups (orange line,
N = 242) and older seals (light blue line, N = 251) could be identified as two separate groups on the photos by the machine learning detector
(based on e.g., colour and shape) while in September all seals were pooled into the same category (black line, N = 195).

land-based observations (Inman et al., 2019). In addition,
ground-based counting of walruses (pinnipeds) showed a 25%
variability between ground-base observers (Udevitz et al.,
2005). Nevertheless, telescopes can still provide very important
information about the general behaviour of the population
because the long observation times (20 min) can be used to
identify pups and their behaviour without the need of post-
processing. Furthermore, telescope monitoring is less weather-
dependent than drones, because land-based counts can be
performed even during days with strong winds (>19 m/s) which
impede drone flights. A further advantage of telescope surveys
is that pups in the water are counted. In summary, four features
make counting of harbour seals with drones more accurate and
practical than telescope monitoring: (i) access to sites that are

not easily visible to the telescope observer; (ii) faster access to
target locations; (iii) ability to record images and/or videos that
can be used for (re-)counting seals or observe behaviour after
surveys, and (iv) the ability to accurately measure seal body sizes.

Drones with zoom-video were shown to be particularly
useful for manual estimation of total pup numbers, providing
a very fast and effective method both in the field (10 min flight)
and during data post-processing (3–5 min per site). However,
this method requires a skilled drone pilot to accurately video-
scan the colony and a larger and more expensive drone (DJI
Matrice+zoom camera, approx. 10,000 USD). Using a drone
with zoom-videos can also be useful for documenting marine
mammal behaviours (Torres et al., 2018; Inoue et al., 2019;
Infantes et al., 2020; Dickens et al., 2021) because it allows longer
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FIGURE 6

(A) Estimates for total population size of harbour seals in the Koster archipelago are based on August moult counts adjusted for a 65% haul-out
rate (orange points). The cumulative maximum number of pups during June pup counts from historical telescope surveys and zoom-video
surveys in 2021 were taken to represent 100% of pups (blue points). Separate exponential models were fit to count data for total population size
(orange line) and pup numbers (blue line) before and after the year of mass mortality due to Phocine distemper virus (PDV) (dashed line). Shaded
regions represent the residual standard error for each model. (B) The ratio of pups to estimated total population is given for annual pup counts
(points) and based on the exponential model (line).

observations rather than photo snapshots. However, drone
photos (orthomosaics) could be used to document population
shifts such as changes in haul-out distribution through the day
or tidal cycles.

We did not observe any clear disturbance to the seals by
the drones at 40 m altitude while collecting orthomosaics or
during zoom-photo/video surveys at 100 m altitude. The sizes
of the drones used and altitudes of flight have shown to cause
low disturbance to marine mammals, such as harbour seals
(Duporge et al., 2021; Palomino-González et al., 2021; Krause
et al., 2021). Counting pups with telescopes on islands with
complex topography requires that observers drive near Skerries
by boat and count seals as they escape into the water, which
can lead to unnecessary short-term stress both to lactating
mothers and pups.

Pre-programmed flights using small consumer drones such
as the DJI Phantom-4Pro allow easy replication of survey
methods. This trajectory standardisation and low-cost of the
drone (1,500 USD) make the method efficient because surveys
can be performed by users that are not highly experienced in
drone piloting. As a complement to pre-programmed flights,
automated detection for animal counting has the advantage of
reducing analysis times and can increase the accuracy of wildlife
identification in drone images compared to manual counting
(Hodgson et al., 2016, 2018).

This study shows that automatic detection using CNN is an
efficient technique for seal population surveys. Approximately

100 animals for each class (older seals and pups) were required
to train the CNN to automatically detect individuals, instead of
larger image datasets (>1000) which are sometimes required for
other machine learning methods such as FasterRCNN, YOLO
and HOG (Chen and Liu, 2017; Halstead et al., 2018; Corcoran
et al., 2021). However, in some surveys the automatic detection
method failed to identify a larger fraction of the seals due
light conditions (Table 3). Image blur due to low light and
animal movement led to a decreased probability of automated
detection, as the outlines and features of target species were
less clearly distinguishable (Sieberth et al., 2014). In addition,
seals swimming in the water or moving on land became blurry
(ghosting effect) in the orthomosaic and were not detected by
the automated method.

In this study, we also provide a simple, efficient, and non-
invasive method to estimate body size by measuring both their
structural size (body length) and relative body condition (body
width). Measuring the body size of 737 seals took only 5.8 min
of computer processing after the seals were identified using
machine learning. In comparison, manually measuring body
sizes took 13 h. Drones have also been used to estimate the
body mass of free living whales by measuring their body length
and body width (Christiansen et al., 2019) and to calculate the
volume of grey seals (Shero et al., 2021). Here we report a
simplification of previous methods; our approach only requires
average computing times between 60 and 90 min per surveyed
site (orthomosaic construction, running ML detectors and
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TABLE 5 Exponential growth models were used to estimate the realised growth rates for moult and pup counts for the time periods before
(1989–2001) and after (2002–2021) the most recent Phocine Distemper Virus (PDV) outbreaks.

Survey data Dates Rate Intercept n Res. Std. Err.

Moult counts 1989–2001 1.078± 2.6E-2 3.40E-63± 1.6E-61 11 204

2002–2020 1.028± 1.4E-2 4.11E-22± 1.14E-20 18 261

Pups 1989–1997 1.150± 3.8E-2 1.64E-116± 1.1E-114 8 37

2012–2021 0.980± 1.8E-2 9.90E+16± 3.64E18 4 44

It was assumed that the realised growth rate was equal to the asymptotic growth rate. Parameter values are shown± standard error.

FIGURE 7

Summary of the advantages and disadvantages for each sampling method to count seal pups by telescope, drone with a photo/video zoom,
orthomosaics and machine learning (ML).

measuring body sizes), while still providing key information
on the population.

We tested our method for estimating seal body sizes using
a dead seal and a set of panels of known size and found
a very good correlation between true and estimated sizes.
However, this approach requires further development because
the body lengths given in Figure 5 should be treated as proxies
given that body lengths for both pups and older seals are
underestimated compared with values given in the literature
(Härkönen and Heide-Jørgensen, 1990). One possible source of
error likely involves orientation of seals while basking: whereas
the objects in our test were flat on the ground, seals basking
on rocky shores mostly lie on slopes. Because images are taken
in nadir any deviation from the horizontal of seals will lead to
underestimation of their sizes. This problem will not occur in
habitats dominated by sand or mudflats. An additional way to
improve future surveys is to change the position where body
width is measured from the widest part to instead measure
10 cm below the front flipper, as is performed on captured seals.

Such an approach would permit a more stable and repeatable
point of measurement.

Change in the population structure and
future monitoring of harbour seal pups

This study shows that the trend in harbour seal pup
numbers in Kosterhavet was positive between 1989 and 1997
and negative between 2012 and 2021. In June of 2021, a
maximum daily count of 320 pups was recorded using drones.
This suggests that the proportion of pups in the population
has declined despite improved methodology (Figure 6A). This
result suggests a population under increased stress, resulting in
altered demographic parameters (Kjellqwist et al., 1995; Harding
et al., 2018). The proposed scenario of reduced population
growth explains this trend as the outcome of reproductive
skipping and reduced pup and subadult survival, simulating
a population under food limitation. This is one of many
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potential explanations for the observed counts and illustrates
how historical monitoring data can be supplemented with
advanced survey techniques, providing more informative means
of assessing population health at lower costs than traditionally
laborious survey methods. Such data can be used as a source of
information for integrated population modelling, improving the
ability of models to describe past trends and make predictions
about future population development (Plard et al., 2019).
Additional surveys are required to establish if this trend is
consistent over time.

Changes in growth rate in pinniped populations not directly
affected by human activities are often caused by variations in
access to resources such as food or breeding habitat. Food
limitation leads to a sequence of negative effects on vital
population parameters, with reproductive output being the
first to be affected, followed by increased juvenile mortality,
with adult mortality affected last. Somatic growth is also
hampered, leading to higher age at first reproduction and year
skipping (Bowen et al., 2003). Therefore, pairing a time-series
of well-designed surveys assessing breeding success with total
population counts can provide a much earlier assessment of the
population status than total population counts alone. Where
previously the high cost would have prohibited multiple surveys
of the same population within a single year, automated methods
as presented in this study present a viable option.

The International Council for the Exploration of the Sea
(ICES) and the Convention for the Protection of the Marine
Environment of the North-East Atlantic (OSPAR) frameworks
propose that Good Environmental Status (GES) is achieved for
populations at carrying capacity when there is ‘No decline in
population size or pup production exceeding 10% occurred over
a period up to 10 years’. Our data indicate a dramatic drop in
pup production, which is an early warning sign, but the time
series needs to be extended to obtain conclusive evidence.

Overall, the use of drones allowed observations that are
informative for the management of seal populations and could
be integrated into current monitoring practices. Orthomosaic
collection can be easily replicated with low-cost drones, by
providing high-resolution mosaics (1 cm/pixel) to count pups
and older seals as well as documenting their spatial location,
which could be important when revisiting colonies. In addition
to population surveys, drones with zoom-video cameras can
provide new information on seal behaviours, such as mother and
pup interactions during lactation, or response to disturbance
(Krause et al., 2021). Orthomosaics with the location of each
individual older seal and pup can be used to understand how
groups are distributed across skerries and islands and the impact
of human presence, weather patterns, spread of infectious
diseases, etc. This automated workflow can be used to assess
the demography and condition of large mammal populations
(e.g., pinnipeds, sirenians, cetaceans, etc.) by increasing the
statistical power, and provides a new tool for research and
population management.
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