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A  spatially-explicit  predictive  model  was  developed  for the  cover  of  the  seagrass  Posidonia  oceanica  in  a
marine  protected  area  (MPA)  at  Palma  Bay  (NW  Mediterranean).  A  low-cost,  novel drop  camera  system
was designed  and  used  to acquire  standardized  images  that  were  used  for  estimating  P.  oceanica  cover.
A simple,  semi-quantitative  cover  index  through  visual  inspection  allowed  robust  estimates  that  are
free  of  between-observer  bias.  A Bayesian  kriging  approach  was  implemented  through  a  hierarchical
model  for  non-Gaussian  data.  The  map  that  was  produced  is  a  good  match  to a previous  map  of  the
presence–absence  of  P.  oceanica  that  was  produced  by combining  side  scan  sonar  and  aerial  photography.
The  influence  of  bathymetry,  near-bottom  orbital  velocities  (Ub) and  slope  on  cover  distribution  were
arine parks
eographical distribution
ayesian hierarchical model
enthic mapping
ave exposition

ongitude: 2◦40′E–2◦48′E

evaluated  using  a generalized  linear  model,  while  taking  into  account  the  spatial  dependence  between
observations.  We  found  that  the  important  environmental  variables  were  depth  and  Ub, while  no  effect
of slope  was  found.  The  approach  used  here  allowed  us  to  not  only  map  the  cover  of Posidonica  oceanica
but  also  to  provide  spatial-explicit  information  of  prediction  uncertainty.

© 2013 Elsevier B.V. All rights reserved.
atitude: 39◦23′N–39◦31′N

. Introduction

Benthic habitat mapping plays an important role in the conser-
ation and management of seagrass meadows, especially within
he context of marine protected areas (MPAs; Jordan et al., 2005;
tevens and Connolly, 2005; Grech and Coles, 2010). Underwater
hotography and videography have been demonstrated to be pow-
rful tools for monitoring benthic communities, especially because
hey are non-destructive methods for species identification that
an provide observations over large areas (Holmes et al., 2007).
n addition, the development of small, remotely-deployed devices
ave overcome the main limitations of SCUBA divers and oceano-
raphic vessels, allowing the monitoring of great expanses from
mall boats at low cost and high efficiency (Stevens and Connolly,
005).

Different statistical approaches have been used for modeling
he spatial distribution of seagrasses and for examining their rela-
ionships with different environmental variables (Kelly et al., 2001;
onseca et al., 2002; Fourqurean et al., 2003; Bekkby et al., 2008).

tatistical analysis of these data is challenging because of the exist-
nce of spatial autocorrelation. Kriging is a family of geostatistical
ethods that explicitly incorporate the spatial structure of the data.

∗ Corresponding author. Fax: +34 971611761.
E-mail address: david.march@uib.es (D. March).

304-3770/$ – see front matter ©  2013 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.aquabot.2012.12.005
Different types of kriging have previously been used to map  sea-
grasses, such as indicator kriging (Holmes et al., 2007; Kendrick
et al., 2008) and ordinary kriging (Fourqurean et al., 2001; Zupo
et al., 2006; Leriche et al., 2011). However, as pointed out by Holmes
et al. (2007),  geostatistical models usually assume a Gaussian dis-
tribution. However, the type of data usually available for mapping
seagrass meadows is presence–absence, or percent cover, which
are not necessarily conform a Gaussian distribution. Recently, the
implementation of Bayesian kriging has been demonstrated to be
a useful tool to incorporate spatial effects that result from spatial
autocorrelation, even when dealing with non-Gaussian distribu-
tions (Banerjee et al., 2004).

We combine seabed images and geostatistical analysis for
extensive beds of Posidonia oceanica (L.) off Mallorca (Spanish
Mediterranean). This species is endemic in the Mediterranean Sea,
where it is the dominant and most abundant seagrass species and
forms extensive meadows on both soft and hard bottoms from the
sea level down to 40 m (Duarte, 1991; Boudouresque et al., 2009).
The current status of P. oceanica is especially critical because this
long-lived species grows very slowly (Marbà and Duarte, 1998)
and is very sensitive to natural and anthropogenic disturbances
(Boudouresque et al., 2009). The specific goals of this study are (1)

to present a standardized method for image acquisition from a drop
camera that allows the estimation of seagrass cover using a semi-
quantitative scale estimated by visual inspection; (2) to evaluate
the effect of some key environmental variables on seagrass cover;

dx.doi.org/10.1016/j.aquabot.2012.12.005
http://www.sciencedirect.com/science/journal/03043770
http://www.elsevier.com/locate/aquabot
mailto:david.march@uib.es
dx.doi.org/10.1016/j.aquabot.2012.12.005
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Fig. 2. Subcam (Albatros Marine Technologies S.L.) system. A video camera is

class up to 5% (Table 1). We then transformed the BBCA scores
to the Average Covering Index (ACI), which assumes that each
discrete value corresponds to the mean point of each class interval
(Boudouresque, 1971; van der Maarel, 1979).

Table 1
Braun-Blanquet Cover Abundance (BBCA) scale and Average Covering Index (ACI).
Each habitat type was scored in each image according to this scale.

BBCA scale Interpretation ACI (%)

0 Absence 0
1  <5% cover 2.5
ig. 1. Map  of the study area showing the sampled locations. Palma Bay Marine
eserve (PBMR) boundaries enclose the Integral Zone (IZ) and the Buffer Zone (BZ).
he  location of the zones of artificial reefs in PBMR are presented.

3) to generate a probabilistic map  of seagrass cover that can be
sed as a proxy for the status of P. oceanica in a marine protected
rea (MPA) and 4) to incorporate uncertainty in the estimated maps
f seagrass cover.

. Materials and methods

.1. Study area

Palma Bay Marine Reserve (PBMR) of Mallorca (NW Mediter-
anean) is a marine protected area (MPA) that covers an open water
rea between the shoreline and the 30 m isobath (Fig. 1). It was  cre-
ted in 1982, but human activities were not regulated in the reserve
ntil 1999. This MPA  is zoned into two management areas with dif-
erent levels of protection: (1) an Integral Zone (∼2 km2), where all
shing activities, scuba diving, and boat anchoring over seagrass
eadows are prohibited; and (2) a Buffer Zone (∼24 km2), where

shing activities and scuba diving are regulated, and boat anchoring
s allowed everywhere. Since 1990, several artificial reefs have been
eployed to dissuade furtive trawling in the area. Two main key
abitats are represented in PBMR: seagrass meadows of P. oceanica
nd soft bottoms (Fig. 1).

.2. Survey device and data collection

In this study, we measured seagrass cover using a customized
rototype of a non-invasive drop camera system (Subcam, Alba-
ros Marine Technologies S.L.) (Fig. 2). This system was  used in

 5-m length motorboat and consisted of a video camera (SONY
/3′′ CCD, 3.6 mm lens, 1 lx/F 1.2) mounted on a metallic struc-
ure that allowed us to obtain vertical images at the same distance
148 cm)  from the sea bottom. The area covered by the camera was

2
.9 m . The camera was connected to an on-board computer via an
mbilical cable (40 m length). Real-time images were visualized
ith custom software (Visualizer, Albatros Marine Technologies

.L.) that captured georeferenced images.
mounted on a metallic structure to obtain standardized images of seagrass cover.
The system is dropped from a small boat by an umbilical cable that permits obtaining
real-time images.

We  examined the data of 112 sampling locations from between
5 and 35 m depth, collected between May  2009 and June 2009
(Fig. 1). During this season, P. oceanica reaches its maximum leaf
length (Fourqurean et al., 2007), which facilitated the identifica-
tion of P. oceanica in localities of low cover. At each location, three
images were captured in succession at random sampling positions
separated between 2 and 10 m apart. We selected days with gen-
tle winds to minimize boat drift. In total, we  recorded 336 images.
Each of these 336 images was manually processed for determining
the cover of P. oceanica by three independent trained observers (see
Subsection 2.5.1 for the assessment of the between-observer bias).

2.3. Quantification of seagrass cover

Image classification was  based on the Braun-Blanquet Cover
Abundance (BBCA) scale, previously used for seagrass research
(Fourqurean et al., 2001, 2003). The BBCA assesses cover according
to a scale that has 25% intervals with an additional low cover
2 5–25% cover 15
3 25–50% cover 37.5
4  50–75% cover 62.5
5 75–100% cover 87.5
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The statistical unit for the foregoing analysis was the location.
herefore, first the three ACI scores of an image (one per observer)
ere averaged. Then, the averaged ACI scores of the three images

rom the same location were averaged again, to obtain a single ACI
alue per location.

.4. Predictor variables

Three key environmental variables were selected a priori as
utative explanatory variables of seagrass cover. We  generated
odels for bathymetry, slope and near-bottom orbital velocities

n the domain vegetated by P. oceanica, as determined by a previ-
us map  of benthic communities (Posidonia-LIFE map, Government
f Balearic Islands). A digital bathymetric model (15 m × 15 m grid
ize) was created using original bathymetric contours provided
very 1 m (Posidonia-LIFE map). We  then computed the slope at
he same resolution using the Spatial Analyst extension of ArcGIS
.2 (ESRI).

Near-bottom orbital velocities (Ub) at the study area were cal-
ulated from wave conditions to quantify the wave exposition
xperienced by the seagrass meadow. As water waves propagate
rom deep to shallow water, they change their properties (wave
ength, wave height and direction), and therefore, deep water

aves have to be propagated to shallow waters (area of interest)
sing a numerical model (Infantes et al., 2009, 2011; Álvarez-
llacuria et al., 2010). Significant wave height (Hs), peak period
Tp) and direction were obtained from the closest WANA node
WANA2069035), located approximately 15 km from the study site
t 50 m depth (2.625 E 39.375 N). The WANA node provides opera-
ionally wave data by the reanalysis of a third generation spectral

AM  model.
The analysis of the wave data for the WANA node for the period

996–2010 shows that, at the study area, the most energetic waves
re from the SW,  with an average Hs of 0.7 m and Tp of 5.5 s.
hese conditions were propagated to the shore using a numeri-
al model based on the mild slope parabolic approximation (Kirby
nd Dalrymple, 1983). The model output provided a wave field for
he whole grid and at the appropriate scale (15 m × 15 m grid size).
ear-bottom orbital velocities (Ub) at the experimental locations
ere calculated from the wave propagation model outputs using

inear wave theory (see Infantes et al., 2009 for details). This model
oes not take into account viscous effects such as the wave attenua-
ion due to the presence of vegetation (Infantes et al., 2012), which
ould overestimate the values of the Ub where a dense seagrass
eadow is present.

.5. Data analysis

.5.1. Observer bias
To assess between-observer differences, a set of preliminary

rial and training sessions was completed based on a subset of
mages as a reference scale. Three observers then scored the cover of
. oceanica in all of the images. The existence of between-observer
ifferences for ACI values on the five types of seabed considered
as tested using an ANOVA. The data were not normal even after

pplying conventional transformations. Thus, a Monte-Carlo ran-
omization test was completed for testing the null hypothesis of
o-differences between observers (observations were randomly
hifted between observers but constrained within an image). The
NOVAs were performed using the R software (R Foundation:
ww.r-project.org) and the Vegan package.
.5.2. Data validation
We assessed the correspondence of the presence–absence of

eagrass of the sampled photographs with a previously produced
ap. The Posidonia-LIFE map  was built up by integrating side scan
ny 106 (2013) 14– 19

sonar, aerial photography and SCUBA observations (Fig. 1). We
defined the seagrass presence at a location when the mean of the
ACI values was equal to or higher than 0.5% (this requires having,
in at least 2 out of 3 images, a BBCA score of 1). Before overlapping
sampled locations with a polygonal map, we  defined a buffer area
of 15 m around each location, to consider the uncertainty associ-
ated with the GPS error. We  used the kappa index of agreement
(Cohen, 1960) to assess the reliability between observed values
(i.e., sampled images) and expected values (i.e., benthic map). The
kappa index varies between -1 and 1, where 1 indicates perfect
agreement, −1 perfect disagreement, and 0 random assignment.

2.5.3. Spatial model
We  implemented a predictive spatial model for point-

referenced data of seagrass cover on the area of the MPA. Data used
for the analysis only contained those locations where P. oceanica
was  present (n = 64). To assess the predictive performance of the
model, we  held out a randomly selected subset of 15% (n = 10 loca-
tions), for cross-validation. The predictive spatial model consisted
of a Bayesian hierarchical model, as is implemented in the spBayes
package (Finley et al., 2007).

The steps involved in the process are the following (see
Appendix 1 for more details): (1) specifying a logistic regression
model to relate environmental variables with seagrass cover; (2)
defining a spatial correlation function to incorporate the spatial
dependence in the model; (3) assigning prior distributions to set
the probability distribution that represents the uncertainty of the
model parameters; (4) using Markov Chain Monte Carlo (MCMC)
methods to fit the model; and (5) sampling the posterior distribu-
tion to map  the predicted values as well as the uncertainty of the
predictions.

We then used the prediction on the random set-aside subset to
measure the prediction error of the model (i.e., the cross-validated
prediction error). We  computed the root mean square error (RMSE).
Finally, we  also computed the RMSE for a non-spatial logistic
regression on a generalized linear model, to compare the two  mod-
els.

3. Results

3.1. Observer bias

After some training, there was no evidence of between-observed
bias. An ANOVA demonstrated that between-observer differences
were non-significant (F = 0.0092). The probability of obtaining this
value when the null hypothesis [no differences between observers]
is true is 0.53; this value is based on 1000 random permutations.
Observers were freely permuted within images but images were
not permuted.

3.2. Agreement between methodologies

P. oceanica was  detected at locations deeper than 6 m (coincid-
ing with the minimum sampled depth) and down to 33 m depth
(maximum sampled depth was 35 m).  Results from validation of
seagrass presence–absence at sampled locations in relation to the
Posidonia-LIFE map  are presented in Table 2. In only one sample
was  P. oceanica not detected at a location where it was  expected
to appear, in accordance with the Posidonia-LIFE map. This sam-
pled location was  at 31.5 m depth, and the distance to the closest
edge between seagrass and sandy bottoms was  85 m (based on the
Posidonia-LIFE map). In contrast, we  detected seagrass at 7 sam-

pled locations where it was  not expected to appear. Four of these 7
locations had very low seagrass cover (ACI < 2.5%) and were placed
at the greatest depths, which were close to the lower limit. They
were located near seagrass patches (at distances ranging between

http://www.r-project.org/
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Table 2
Presence–absence correspondence between current assessment and the Posidonia-
LIFE  map, which has been reclassified into presence and absence of Posidonia
oceanica.

Sampling Posidonia-LIFE map  Total

Posidonia presence Posidonia absence

Posidonia presence 57 7 64
Posidonia absence 1 47 48
Total 58 54 112

Table 3
Coefficient estimates of a hierarchical spatial regression model (posterior medians
and upper and lower 2.5 percentiles). First block provide point and credible interval
estimates of the intercept and covariates. Second block provide estimates for the
variance, spatial decay and effective range parameters.

Parameter Posterior median 0.025 Quantile 0.975 Quantile

Intercept 9.20 1.59 18.61
Depth −0.30 −0.60 −0.06
Ub −13.86 −32.12 2.63
Slope −0.71 −2.19 0.76
�2 0.164 0.060 0.620

1
o
r
a
2
l
b

3

i
v
w
0

T
t
P
w

ф 0.008 0.001 0.015
Effective range (m)  367 194 4207

7 and 110 m from the closest seagrass patch). The remaining 3
f the 7 locations had high seagrass cover (ACI = 87.5%) and cor-
esponded in the Posidonia-LIFE map  to epilithic algae. They were
lso located near seagrass patches (at distances ranging between
5 and 133 m from the closest seagrass patch), close to the upper

imit. The kappa index based on Table 2 data was 0.86, which can
e considered as very good (Landis and Koch, 1977).

.3. Spatial distribution

Maps of the covariates used for model prediction are presented
n Fig. 3. The depth ranged between 5.7 and 37.6 m,  with a mean
alue of 24.4 m,  while the slope ranged between 0.0 and 3.7 (%),
ith a mean value of 0.6 (%). The Ub ranged between 0.0 and

.8 ms−1, with a mean value of 0.07 ms−1.
Parameter estimates of the spatial model are detailed in Table 3.
he credible intervals (CI) suggested that depth significantly con-
ributed to the model, whereas the Ub is significant at the 90% CI.
. oceanica cover would be negatively associated with depth and
ave characteristics (Table 3). However, there was no significant

Fig. 3. Environmental covariates on vegetated areas (gridsize 15 m × 15 m
ny 106 (2013) 14– 19 17

effect of slope on seagrass cover (Table 3). The median values of
spatial parameters are 0.164 for �2, and 0.008 for ф (see the spec-
ification of the spatial effect variance -�2- and the spatial decay
parameter -ф- in Appendix 1). The posterior median of the effec-
tive range indicates a decline in the residual spatial autocorrelation
at ∼350 m.  The uncertainty of the latter parameter is relatively
large (CI = 194–4207 m),  which indicates that it cannot be estimated
precisely.

In the probability map  (Fig. 4a) the median value of each pixel’s
posterior distribution serves as the prediction. The predicted prob-
ability of seagrass cover is mainly driven by depth. Note also that in
some areas (i.e., in the SE zone) of shallow waters there is a decrease
of seagrass cover, possible due to high Ub. The prediction error is
presented by the range of 0.025 and 0.975 CI quantiles (Fig. 4b).
Cross-validation performance of the spatial model (RMSE 0.213)
was  similar to the model obtained by a non-spatial logistic model
(RMSE 0.214).

4. Discussion

Vertical photography from a drop camera permits coverage of a
large area and collects deeper samplings in comparison with con-
ventional vertical photography conducted by scuba divers. Other
applications for seagrass mapping have used similar drop-cameras
(Bekkby et al., 2008; Roelfsema et al., 2009) and tow-camera sys-
tems (Stevens and Connolly, 2005; Holmes et al., 2007; Lefebvre
et al., 2009). Holmes et al. (2007) stated that four main factors
make image classification difficult: (1) camera angle; (2) proximity
to plant; (3) conditions of light; and (4) water column turbidity.
Our drop camera system successfully solved the first two factors,
providing the same camera angle and distance to the seagrass
for all of the images. Control over the conditions of lighting may
be overcome with powerful lights and white balance correction,
while water column turbidity constitutes an external factor that is
more difficult to control. Nevertheless, these two factors are more
relevant for species differentiation or automatic image classifica-
tion and are not relevant for estimating seagrass cover in well
identifiable seagrass meadows, as was  our purpose. The estima-
tion of seagrass cover was made by visual inspection and used

a semi-quantitative scale that resulted in a rapid visual assess-
ment technique. It is noticeable that, after some training with a
small collection of reference images, no between-observer bias was
detected.

).  (a) bathymetry; (b) slope; (c) near-bottom orbital velocities (Ub).
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Appendix A. Supplementary data
ig. 4. Spatial prediction of seagrass cover (gridsize 75 m × 75 m):  (a) posterior esti
rediction represented by the range between the lower and upper 95% posterior pr

The relationship of seagrass spatial distribution with
athymetry, wave exposure and slope has been explored in
revious studies (e.g. Kelly et al., 2001; Krause-Jensen et al., 2003;
upo et al., 2006; Bekkby et al., 2008; Infantes et al., 2009). In
ur study, depth and wave exposure (as Ub) were significant,
hereas slope had no effect on the seagrass cover. Depth was the
ost important factor that determined the spatial distribution

f P. oceanica cover in our study area. This result is consistent
ith previous studies (Marbà et al., 2002; Zupo et al., 2006).
owever, in terms of its effects on seagrass cover, instead of a
irect explanatory variable, depth should be considered as a proxy
or light attenuation (Duarte, 1991; Dalla Via et al., 1998; Duarte
t al., 2007). The lower depth limit found in our dataset of 33 m
onforms with other sources on P. oceanica (Marbà et al., 2002;
upo et al., 2006; Duarte et al., 2007).

The negative relationship of seagrass cover with wave exposi-
ion (decreasing cover with increasing wave exposition) has been
lso demonstrated in previous studies (Kelly et al., 2001; Fonseca
t al., 2002; Krause-Jensen et al., 2003; Bekkby et al., 2008; Infantes
t al., 2009). However, hydrodynamic conditions have been shown
o have little influence on the meadow cover below the depth where
ave action on the seafloor becomes negligible (Vacchi et al., 2010).

n our study, we found a negative relationship between seagrass
over and Ub, as seagrass cover decreases with increasing near-
ottom orbital velocities.

Slope has been identified as an important factor for the distri-
ution of macrophytes (Duarte and Kalff, 1990; Narumalani et al.,
997; Bekkby et al., 2008). Plant biomass decreases with increasing
lope, as steep slopes will limit the rooting capabilities of aquatic
lants. However, any effects of slope have been found in many study
reas with small slope variations in gentle terrains (Krause-Jensen
t al., 2003). Our study area was similar to the latter case, which
ould explain the lack of significance of slope in our model.

Uncertainty maps can be used to detect regions where the
umber of observations should be increased. Our results suggest

igher uncertainty near the upper limit of P. oceanica. This pattern
ould be due to the effect of waves in shallow waters. This effect
ould probably be better modeled if more locations in shallow
aters were measured. In deeper water, the uncertainty increased
 (median) for predicted response surface Y(s) seagrass cover; (b) uncertainty of the
ve intervals.

too, probably due to the vicinity to the lower-limit, where density
is reduced and beds become patchy.

Spatial dependence of the cover has been reported for other Posi-
donia species (Holmes et al., 2007; Kendrick et al., 2008). Holmes
et al. (2007) determined spatial dependence for Posidonia sinuosa
and Posidonia coriacea over more than 2500 m.  Similarly, Kendrick
et al. (2008) determined ranges over 610 m up to ca. 3 km. In our
study, the extent of spatial dependence (effective range) is close
to 350 m.  However, this parameter has been estimated with low
precision and it could reach up to ca. 4 km (upper 95% CI). Pairs of
locations at <350 m represent 1.5% of this study, while those located
at <4000 m represent 54.2%. The low number of pairs separated at
<350 m would suggest a low effect of spatial autocorrelation on
parameter estimation. This observation would explain the small
difference in RMSE between the geostatistical model and the non-
spatial model, and it suggests considerable homogeneity in bed
cover.

Acknowledgements

This work would not have been possible without the help and
support of the people that collaborated in the fieldwork, partic-
ularly M.  Linde, I. Álvarez, S. Pérez, E. García, and J. Pericás. We
thank Andrew Finley for support on spBayes. We  also thank the
support given by Albatros Marine Technologies SL, and Skua Gabi-
net d’Estudis Ambientals SLP. The habitat map  was  obtained from
the Posidonia-LIFE program, Government of the Balearic Islands.
This study was  financed by the projects ROQUER (CTM2005-00283)
and CONFLICT (CGL2008-958), which were funded by the Spanish
Ministry of Research and Science. The authors D.M., J.A and E.I. had
a fellowship from the Spanish Ministry of Research and Science,
and M.C. from the Government of the Balearic Islands.
Supplementary data associated with this article can be found,
in the online version, at http://dx.doi.org/10.1016/j.aquabot.
2012.12.005.

http://dx.doi.org/10.1016/j.aquabot.2012.12.005
http://dx.doi.org/10.1016/j.aquabot.2012.12.005


ic Bota

R

Á

B

B

B

B

C

D

D

D
D

F

F

F

F

F

G

H

I

D. March et al. / Aquat

eferences

lvarez-Ellacuria, A., Orfila, A., Olabarrieta, M.,  Medina, R., Vizoso, G., Tintoré, J., 2010.
A  nearshore wave and current operational forecasting system. J. Coast. Res. 26,
503–509.

anerjee, S., Calin, B.P., Gelfand, A.E., 2004. Hierarchical Modeling and Analysis for
Spatial Data. Chapman and Hall/CRC, Boca Raton.

ekkby, T., Rinde, E., Erikstad, L., Bakkestuen, V., Longva, O., Christensen, O., Isaeus,
M.,  Isachsen, P.E., 2008. Spatial probability modelling of eelgrass (Zostera marina)
distribution on the west coast of Norway. ICES J. Mar. Sci. 65, 1093–1101.

oudouresque, C.F., 1971. Méthodes d‘etude qualitative et quantitative du benthos
(en particulier du phytobenthos). Tethys 3, 79–104.

oudouresque, C.F., Bernard, G., Pergent, G., Shili, A., Verlaque, M.,  2009. Regression
of  Mediterranean seagrasses caused by natural processes and anthropogenic
disturbances and stress: a critical review. Bot. Mar. 52, 395–418.

ohen, J., 1960. A coefficient of agreement for nominal scales. Educ. Psychol. Meas.
20,  37–46.

alla Via, J., Sturmbauer, C., Schonweger, G., Sötz, E., Mathekowitsch, S., Stifter, M.,
Rieger, R., 1998. Light gradients and meadow structure in Posidonia oceanica:
ecomorphological and functional correlates. Mar. Ecol. Prog. Ser. 163, 267–278.

uarte, C.M., Kalff, J., 1990. Patterns in the submerged macrophyte biomass of lakes
and  the importance of scale of analysis in the interpretation. Can. J. Fish. Aquat.
Sci. 47, 357–363.

uarte, C.M., 1991. Seagrass depth limits. Aquat. Bot. 40, 363–377.
uarte, C.M., Marbà, N., Krause-Jensen, D., Sánchez-Camacho, M.,  2007. Testing the

predictive power of seagrass depth limit models. Estuaries Coasts 30, 652–656.
inley, A., Banerjee, S., Carlin, B.P., 2007. spBayes: an R package for univariate and

multivariate hierarchical point-referenced spatial models. J. Stat. Softw. 19,
1–24.

onseca, M.,  Whitfield, P.E., Kelly, N.M., Bell, S.S., 2002. Modeling seagrass landscape
pattern and associated ecological attributes. Ecol. Appl. 12, 218–237.

ourqurean, J.W., Willsie, A., Rose, C.D., Rutten, L.M., 2001. Spatial and temporal
pattern in seagrass community composition and productivity in south Florida.
Mar. Biol. 138, 341–354.

ourqurean, J.W., Boyer, J.N., Durako, M.J., Hefty, L.N., Peterson, B.J., 2003. Forecasting
responses of seagrass distributions to changing water quality using monitoring
data. Ecol. Appl. 13, 474–489.

ourqurean, J.W., Marba, N., Duarte, C.M., Diaz-Almela, E., Ruiz-Halpern, S., 2007.
Spatial and temporal variation in the elemental and stable isotopic content of
the seagrasses Posidonia oceanica and Cymodocea nodosa from the Illes Balears.
Spain. Mar. Biol. 151, 219–232.

rech, A., Coles, R.G., 2010. An ecosystem-scale predictive model of coastal seagrass
distribution. Aquat. Conserv.-Mar. Freshw. Ecosyst. 20, 437–444.

olmes, K.W., Van Niel, K.P., Kendrick, G.A., Radford, B., 2007. Probabilistic large-

area mapping of seagrass species distributions. Aquat. Conserv.-Mar. Freshw.
Ecosyst. 17, 385–407.
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