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Abstract

Seagrasses are highly sensitive to human-induced disturbances and global environ-
mental changes. Since the 1980s, Zostera marina meadows along the West Swedish
coast (Skagerrak) have declined significantly, as evidenced by changes in morpho-
anatomical traits, reductions in area coverage, and shifts in associated communities.
However, infaunal assemblages within Z. marina meadows remain understudied
compared to epifaunal communities and have not been previously used as indicators
of seagrass regression. To investigate spatial variability in infaunal composition, we
analysed samples from 15 coastal stations at depths of 1.5-3 m depth. Using an
n-dimensional hypervolume framework, we assessed functional differences between
infaunal and epifaunal communities. We examined infaunal community descriptors—
such as species richness and individual abundance—biotic indices, environmental
drivers (including wave exposure and Z. marina biomass), and correlations with
epifauna. Variability in infaunal composition across sampling stations was primarily
driven by differences in the abundance of dominant taxa, including the polychaete
Capitella capitata, oligochaetes, nematodes, and chironomids. Several coastal sta-
tions, such as Marstrand and Finsbo, were classified as moderately polluted, though
biotic indices, i.e., AMBI, M-AMBI and ISI, showed discrepancies. Spatial patterns

in infaunal assemblages were mainly influenced by Z. marina biomass and maxi-
mum fetch, with a good representation of oligochaetes and chironomids in exposed
stations. These findings suggest that infauna respond differently from epifauna but
provide valuable additional insights into the ecological status, functional traits, and
trophic diversity of Z. marina meadows. Integrating multiple community components
is essential for a more comprehensive understanding of the processes and patterns
driving seagrass ecosystem regression.
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Introduction

Human-driven disturbances are widespread across coastal areas worldwide [1,2],
and their extent and variety have increased significantly in recent decades. In addi-
tion to long-established stressors such as eutrophication and chemical contamina-
tion, recently recognised or increasingly relevant pressures, such as microplastics,
underwater noise, and light pollution, are intensifying their impacts on marine eco-
systems [3—5]. Minimizing and mitigating these disturbances is an urgent priority at
global, national, and regional levels [6]. A precise understanding of their ecological
impacts is essential for advancing knowledge of coastal dynamics and processes

[7]. Consequently, effective spatial management planning must consider not only

the total surface area of ecosystems but also a comprehensive understanding of the
biological structures and environmental drivers shaping them [8]. A thorough grasp of
biodiversity responses to human-induced pressures is fundamental to ensuring that
human activities remain within planetary boundaries and to accurately assessing their
environmental impact in the Anthropocene [9].

Ecological baselines—reference states of habitat distribution, species composi-
tion, and abundance—are essential for informing conservation and management
strategies [10]. Biodiversity monitoring programs provide crucial data on ecosystem
changes, guiding research, conservation assessments, and future planning [11].
However, despite their importance, biodiversity data remain scarce and fragmented,
with substantial geographic and taxonomic gaps, compounded by inconsistencies in
sampling methodologies. These challenges are more pronounced in marine envi-
ronments, where data collection requires extensive logistical resources, including
specialized equipment, boat access, and substantial financial investment [12].

Biodiversity monitoring is particularly effective for assessing the environmental
quality of marine habitats [13]. Polluted sites typically exhibit shifts in species com-
position, favouring taxa that thrive under altered environmental conditions. Several
biotic indices have been developed to quantify ecological status based on ben-
thic community structure. These include the Multivariate-AZTI Marine Biotic Index
(M-AMBI), the Benthic Quality Index (BQI), Norwegian Sensitivity Index (NSI), Nor-
wegian Quality Index 1 (NQI1), the Infaunal Trophic Index (ITl) and Infaunal Sensitiv-
ity Index (I1S1) [14]. Most of these tools are based on the Pearson-Rosenberg model
[15] which describes community responses to organic enrichment and disturbance
along environmental gradients. These indices were developed to assess the eco-
logical quality of soft-bottom benthic habitats, focusing primarily on subtidal infaunal
communities [16]. As a result, they often overlook valuable ecological information
provided by other components of the benthic assemblage, such as epifauna and
demersal fish.

Prioritizing the monitoring of highly impacted environments is crucial for conserva-
tion and coastal management. Among marine ecosystems, seagrass meadows have
been a focal point of conservation efforts due to their extensive global decline [17].
The loss of seagrass meadows extends beyond the disappearance of Zostera marina
itself; it also disrupts associated communities of infauna, epifauna, and fish, leading
to a sharp decline in coastal biodiversity [18,19]. Despite the recognized importance

PLOS One | https://doi.org/10.137 1/journal.pone.0334934  October 21, 2025

2/20



https://doi.org/10.54499/UIDB/04292/2020
https://doi.org/10.54499/UIDB/04292/2020
https://doi.org/10.54499/UIDP/04292/2020
https://doi.org/10.54499/LA/P/0069/2020]
https://doi.org/10.54499/LA/P/0069/2020]

PLO\Sﬁ\\.- One

of ecological baselines for coastal management, integrative studies incorporating multiple seagrass-associated communi-
ties remain scarce (though see [8] for an exception). This is paradoxical given the well-established role of benthic inver-
tebrates in bentho-pelagic coupling. These organisms play a fundamental role in coastal ecosystem processes, including
nutrient cycling, detritus decomposition, and carbon transfer to higher trophic levels [20—23]. Incorporating multiple faunal
communities into seagrass monitoring programs could enhance our understanding of ecosystem dynamics and the effects
of anthropogenic disturbances, particularly when considering long-lived species with varying mobility, such as infauna and
epifauna [24].

Infauna and epifauna differ significantly in trophic composition (e.g., infauna are predominantly detritivores, whereas
epifauna are often herbivores), life history traits (e.g., prey-predator interactions), and niche utilization. These differences
could provide deeper insights into ecological patterns and processes occurring within seagrass meadows [8]. More
importantly, their contrasting responses to disturbances—due to differences in mobility—may offer additional perspectives
on ecosystem changes. While infaunal species generally have limited mobility and directly exposed to environmental
stressors, epifauna, with their greater mobility, can potentially evade localized disturbances within the same meadow [25].
However, these distinctions have yet to be explicitly tested.

This study aims to investigate the potential contributions of infaunal communities in Zostera marina meadows to
biodiversity monitoring and environmental assessments. We focus on infaunal communities along the Skagerrak coast
(Swedish west coast), spanning approximately through a coastline distance of 200 km [26]. Our main objective is struc-
tured into five specific aims: (i) to characterise the infaunal communities in terms of taxonomic composition, abundance,
species richness, and functional traits; (ii) to assess the ecological health status of the sampled seagrass meadows using
established biotic indices (M-AMBI, I1SI, NSI, NQI1, ITIl, and BENTIX); (iii) to explore the factors influencing the taxonomic
and functional composition of infaunal assemblages across sampling stations, considering both Zostera-related variables
(e.g., Z. marina biomass and meadow surface area) and environmental factors (e.g., hydrodynamic exposure); and (iv)
to determine the relationship between infaunal and epifaunal assemblages across coastal sites, and (v) evaluate whether
epifauna can serve as a proxy for long-term eutrophication effects in the region [26,27]. By integrating taxonomic and
functional dimensions of biodiversity with environmental context, this study contributes to a more holistic understanding
of how benthic assemblages respond to multiple pressures in temperate seagrass ecosystems. This multifaceted per-
spective helps interpret patterns in community structure and ecosystem functioning, while also mitigating some limitations
inherent to single-season sampling.

Materials and methods
Study area

Atotal of 15 Zostera marina meadows were sampled along the Swedish Skagerrak coast in July 2018 (Fig 1, Table 1),
coinciding with the peak abundance and biomass of epibenthic invertebrates [28]. These meadows were located in
shallow waters (1-3 m depth) and spanned approximately 200 km of coastline, encompassing a range of hydrodynamic
conditions.

To evaluate the influence of hydrodynamics on eelgrass fauna composition, we quantified wave exposure using the
maximum fetch for each site (Table 1). Maximum fetch is defined as the longest horizontal distance over which wind-
driven waves can develop and is considered the most reliable predictor of sediment composition. This is because storms
originating from non-dominant wind directions can also affect sediment properties. Given that wave exposure influences
sediment grain size, organic content, and nutrient availability in eelgrass sediments [29], we selected meadows along a
gradient of wave exposures. For clarity, we categorized these into four exposure levels based on maximum fetch values:
sheltered (0.5-1.5 km), semi-sheltered (1.9-2.4 km), semi-exposed (5.1-6.9 km), and exposed (8.7-13.3 km) [30]. How-
ever, data on sediment composition were not collected from the sampling sites.
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Fig 1. Study areas along the Swedish West Coast. (a) Locations of the 15 sampled seagrass meadows in Sweden. (b) Detailed view of the study
sites along the Swedish West Coast: 1. N. Lindholmen; 2. Kvarnekilen; 3. S. Stridsfjorden (Sannasfjorden); 4. Kdmpersvik; 5. Valén; 6. Bottnefjord; 7.
Finsbo; 8. Lindholmen; 9. Slussen; 10. Hjalton; 11. Skalhavet; 12. Bjérnholmen; 13. Kakenas; 14. Marstrand; 15. Gottskarsviken. (c) Infauna sampling in
a seagrass meadow using a sediment core (QGIS, v3.2, https://qgis.org/).

https://doi.org/10.1371/journal.pone.0334934.9001
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Table 1. Mean abundance of infauna and leaf epifauna in Zostera marina meadows.

N° Meadow name Latitude N | Longitude E | Infauna>0.5mm | Epifauna>1mm | Epifauna>0.25mm | Max.Fetch |Wave exposure
(ind.m?) (ind.m) (ind.m2) (km)
(Present work) (Riera et al. [26])
1 N. Lindholmen | 58°53'20.0 |11°8'2.2 393+84 859+317 35975+ 8851 0.5 Sheltered
2 Kvarnekilen 58°44’58.2 | 11°11°3.9 314+90 4226+1534 73023111724 0.8 Sheltered
3 S. Stridsfjorden |58°43'12.4 |11°15'16.1 471191 73961777 134237 +£31784 2.7 Semi-exposed
4 Kampersvik 58°38'51.6 | 11°17'2.4 2414 +721 270177 12220+ 1961 23 Semi-sheltered
5 Valon 58°29'24.4 | 11°18'7.9 903+239 0* 0* 1.6 Semi-sheltered
6 Bottnefjord 58°27°'51.3 | 11°19'4.7 883+ 184 1252+359 38504 +17179 5.2 Exposed
7 Finsbo 58°18'6.2 11°29'33.2 1610+ 154 971172 51179+ 5663 3.5 Semi-exposed
8 Lindholmen 58°15'46.5 | 11°29'48.7 923+283 36029+ 10543 80027 +12339 0.5 Sheltered
9 Slussen 58°1545.9 | 11°47'5.6 903+ 157 939+347 24866+ 3736 8.1 Exposed
10 Hjalton 58°1516.6 | 11°36'15.5 1295+334 885+170 3063044360 4.5 Semi-exposed
11 Skalhavet 58°12'13.8 | 11°26'3.7 28851468 342911826 72784+17674 1.3 Sheltered
12 Bjornholmen 58°3'8.2 11°31°26.3 687+193 10275+ 6248 89056 + 36536 34 Semi-exposed
13 Kéakenas 58°2'44.6 11°48'35.9 19631473 268+86 14917 +2882 15.1 Exposed
14 Marstrand 57°53'14.9 | 11°35°10.0 2257+715 22091+7583 116319+ 19595 1.4 Sheltered
15 Gottskarsviken | 57°23'4.8 12°1’18.4 177+40 3576+1443 41228 +9231 6.9 Exposed

The mean abundance (ind.m2+ SE) of infauna (> 0.5mm) and leaf epifauna (> 1mm and > 0.25mm) in 15 Z, marina meadows along the Swedish west
coast in July 2018. * No Zostera meadows were reported during the field survey. Epifauna data extracted from Riera et al. [26].

https://doi.org/10.1371/journal.pone.0334934.t001

Field sampling and sample processing

Infaunal samples were randomly collected using a PVC core (910cm, length 30cm) at the selected stations. At each
meadow, cores were inserted to a depth of 20cm in vegetated habitats and immediately transferred to plastic bags. A

total of six cores were taken per location, with each replicate spaced at least 2 m apart to minimize the bow-wave effect.
Samples were collected by snorkelling. In the laboratory, the samples were sieved through a 0.5 mm mesh, after which
the infauna was collected, preserved in 70% ethanol, and stained with Bengal rose. Specimens were identified to species
level whenever possible and counted using a stereomicroscope.

For epifaunal samples, six randomly selected eelgrass specimens with associated fouling (detritus, epiphytes, and
fauna) were collected per meadow using a plankton net with a 200 um (0.2 mm) mesh size, mounted on a frame enclos-
ing an area of 35x35cm (0.123 m?). Each sample was spaced at least 5 m apart and was collected by snorkelling. The
coverage of eelgrass and macroalgae was estimated in the field using a 50 x 50 cm frame placed within the meadow, with
replicates spaced at least 5 m apart.

In the laboratory, Z. marina leaves were rinsed with freshwater to remove detritus, and the associated epiphytes and
fauna were sieved through a 1mm (1,000 yum) mesh (“large epifauna”) and a 200 ym (0.2 mm) mesh (“small epifauna”).
Although both fractions of epifauna occupy the lowest trophic levels, they are considered distinct assemblages due to
previously reported differences in species composition [28,31,32]. Therefore, they were analysed separately in this study
(see Riera et al. [26] for further details on epifauna sampling and Zostera biomass).

All plant material was collected in accordance with national and international guidelines and legislation, with efforts
made to minimize disturbance to the sampled meadows.

Functional space characterization

Our functional analyses followed the general protocol proposed by Mammola et al. [33], beginning with the creation of a
trait matrix based on input data from the associated communities of Z. marina meadows. This matrix was then used to
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delineate the multidimensional trait space to describe patterns and responses to ecological questions. In this analysis,
we aimed to assess whether functional space differed between infauna and small and large epifauna. We expected to
observe greater polarization in functional trait distributions among these communities, potentially influenced by wave
exposure.

To explore and visualize the functional differences between infaunal and epifaunal communities in Z. marina meadows,
we constructed a functional trait matrix for each of the 70 recorded taxa using published literature (Table 2). This matrix
was then used to represent the functional space of each community through a geometric n-dimensional hypervolume
approach [34,35]. The functional characteristics of epifaunal and infaunal communities were compared to assess the
extent of overlap between them, indicating whether they fulfil similar roles in ecosystem functioning. This probabilistic
method employs high-dimensional kernel density estimations to delineate the shape and volume of the multidimensional
space [35].

Six biological traits were selected for their relevance in distinguishing among the three studied faunal communities—
namely, infauna, large epifauna, and small epifauna (Table 2, S1 Table) [36,37]. These traits represent key aspects of
organism morphology (“maximum body size,” “presence of elongated body,” and “presence of eyes”), feeding strategies
(“trophic guild”), behavior (“mobility”), and life history characteristics (“larval development”). Each trait reflects a specific
dimension of ecological functioning in benthic communities: maximum body size is related to resource use and suscep-
tibility to predation [36]; trophic guild captures the species’ role in energy flow (e.g., detritivory vs. suspension feeding)
[36,38]; mobility influences sediment reworking and exposure to environmental stressors [37]; the presence of eyes is
associated with predator avoidance and active foraging [37,39]; an elongated body facilitates burrowing and sediment
penetration [38]; and larval development mode relates to dispersal capacity and recovery potential following disturbance
[38]. When information on a specific trait was unavailable for a given taxon, zero values were assigned for each trait cat-
egory, and the taxon was excluded from trait weighting calculations. The selected functional traits are commonly used in
invertebrate studies [36—39].

Trait categories were defined for each of the 70 recorded taxa in infauna, large epifauna, and small epifauna communi-
ties in the studied Zostera marina meadows (S1 Table). Trait selection and classification were based on commonly used
references in trait-based benthic studies [36—39], and specific trait sources are cited below. Definitions of each trait and
their ecological relevance are provided in the main text.

As our dataset consisted predominantly of categorical traits, with only “maximum body size” as a continuous variable,
we used the Gower dissimilarity measure to accommodate mixed data types and performed Principal Component Analysis
(PCA) to extract orthogonal morphological axes [40]. Hypervolumes were then calculated using the package BAT v. 2.7.0
[41] in the software R [42], implementing a Gaussian kernel density estimate. The Gaussian kernel density estimation was
selected because it allows for a probabilistic, rather than binary, characterization of functional space [40], a method that
has been successfully applied to capture functional variation in similar marine environments [43].

Table 2. Biological trait variables and categories for functional matrix construction.

Traits Categories

Maximum body size mm

Trophic guild Omnivorous, Subsurface depositivorous, Detritivorous, Carnivorous, Suspensivorous, Grazer
Mobility Crawler, Burrower, Semi motile

Elongated body Present, Absent

Larvae development Direct, Indirect

Eyes Present, Absent

https://doi.org/10.1371/journal.pone.0334934.t002
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To determine whether infaunal and epifaunal communities across meadows with different exposure levels were sub-
jected to distinct filtering processes, we quantified the dispersion of functional space using the kernel.dispersion() function
and the divergence method [40].

Statistical analysis

Univariate metrics, including abundance, species richness (number of taxa), Shannon—Wiener Index (H’ [44]), Hurlbert
Index (ES50 [45]), Pielou’s Evenness (J’ [46]), AMBI (AZTI's Marine Biotic Index [16]), Norwegian Sensitivity Index (NSI
[47]), Indicator Species Index (ISl [47]), and BENTIX [48], were calculated for infauna, large epifauna, and small epifauna.
Additionally, as multimetric or multivariate methods, M-AMBI (multivariate AMBI [16,49]) and BQI (Benthic Quality Index
[13,50]) were applied. With the exception of BQI (calculated as average abundances per station), all indices were com-
puted at the replicate level. AMBI and M-AMBI were calculated using AMBI index software v5.0 (http://ambi.azti.es), while
NSI, I1SI, and BENTIX were computed using the BB/ R package v. 0.3.0 [51]. The remaining metrics were calculated using
the vegan R package v. 2.6-6.1 [52]. The BQI formulation used in the Swedish assessment within the Water Framework
Directive (WFD) was applied in this study [13].

Boundary settings for the BQI classification followed Rosenberg et al. [50] in accordance with WFD recommendations,
where coastal environmental status is categorized into five levels. In the present study, BQI values ranged from 1.70 to
7.12 (reference value) for coastal stations at depths <20 m, corresponding to the five WFD ecological status classes. The
classification was as follows: BQI 25.70: “High” ecological status; BQl>4.2: “Good” ecological status; BQI = 2.85: “Moder-
ate” ecological status; BQl>1.42: “Poor” ecological status; BQl<1.42: “Bad” ecological status.

To ensure statistical independence and avoid pseudoreplication, replicate cores were first averaged within each site
(n=15 meadows). All subsequent multivariate and regression-based analyses were therefore conducted at the site level,
with one set of response variables (infaunal composition and diversity indices) per meadow.

The analysis minimised overfitting from collinearity and ensured model stability by calculating site-level pairwise Spear-
man’s rank correlations among all candidate environmental predictors using the corrplot R package v.0.95 [53]. Where
two predictors were stronlgy correlated (R2>0.6 [54]), only the biologically most relevant predictor [55] was retained. This
screening yielded eight site-level predictors: Zostera marina biomass, Chorda filum biomass, Fucus serratus biomass,
Dictyota sp. Biomass, Polysiphonia sp. Biomass, Cladophora sp. Biomass, Aglaothamnion sp. Biomass, and Maximum
fetch.

To assess patterns in infaunal assemblage structure among the 15 Zostera marina meadows, non-metric multidimen-
sional scaling (n-MDS) was conducted in three dimensions (k=3), based on the Bray-Curtis dissimilarities of relative
abundances. Abundance data were standardised by row totals after adding a small constant, without transformation. Ordi-
nations were performed using the vegan R package v2.6.6. [52]. Species potentially driving site distribution patterns were
identified using the envfit function in vegan [52], retaining taxa with significant correlations (p<0.013).

Distance-based redundancy analysis (db-RDA) and multivariate generalised linear models (GLMs) were applied, using
the averaged site-level community matrix (n=15) as the response data and eight predictor variables as covariates. To
test whether environmental variation (e.g., Zostera marina biomass, eelgrass coverage, and associated algal biomasses)
structured infaunal assemblages across the 15 Z. marina meadows, we performed a db-RDA [56] with the dbrda() function
from the vegan R package [52], computing Bray—Curtis dissimilarities on square-root-transformed, site-level relative abun-
dances. Predictor collinearity was screened using Variance Inflation Factors (VIFs), adopting a threshold of <10. Model
and axes significance were tested by permutation (999 permutations) with anova.cca() function. Ordination was visualised
with a biplot showing sites grouped by wave exposure category (sheltered, semi-sheltered, semi-exposed, exposed), and
environmental vectors indicating the direction and strength of association.

Complementary inference used GLMs fitted to the site-level infaunal abundance matrix with manygl/m() function
(mvabund R package v.4.2.1) [57], specifying a negative binomial distribution to accommodate overdispersion. Candidate
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predictors were selected a priori based on the db-RDA results. Significance (deviance tests and p-values) was evaluated
with anova.manyglm() function using PIT-trap resampling (999 iterations). Model assumptions were evaluated by visual
inspection of residual plots and quantile-quantile (QQ) plots [54]. This approach provided a robust, model-based test of
the multivariate effect of environmental predictors on infaunal community composition.

Correlations between univariate variables (e.g., individual abundance, number of species, H’, J’, and ES50) for infaunal
and epifaunal communities, as well as environmental variables (Z. marina and epiphyte biomass), were tested using the
Pearson product-moment correlation when both variables followed a normal distribution. When normality was not met, the
Spearman rank correlation was applied to assess the degree of association between variables.

The evenness of trait distributions within the total functional space was assessed using the kernel.evenness function of
BAT R package v.2.9.6 [32], which quantifies the overlap between the observed functional hypervolume and a theoretical
hypervolume with evenly distributed traits and abundances. The significance of observed differences in functional rich-
ness, dispersion, and evenness was tested using a Wilcoxon test.

Results
Infauna composition

A total of 18,078 individuals were collected, representing 37 taxa across eight taxonomic groups: Polychaetes, Mollusks,
Oligochaetes, Insects, Amphipods, Echinoderms, Nemerteans, and Nematodes (S2 Table). The most abundant taxa
included the polychaete Capitella capitata (2,885 ind.m-2, 16% of total abundance), followed by oligochaetes (2,650
ind.m-2, 15%) and chironomids (2,454 ind.m-2, 14%). In contrast, nine taxa—Aonides oxycephala, Magelona sp., Nephtys
sp., Phyllodoce maculata, Sphaerosyllis histryx, Spionidae sp. 1, the mollusk Macoma balthica, the echinoderm Asterias
rubens, and Nemerteans—were recorded in only a single replicate, indicating their rarity.

Species richness varied among sampling stations, with the highest diversity recorded at Kampersvik (17 species) and
Skalhavet (15 species). The lowest richness was observed at Gottskarsvikens and Kvarneviken (6 species each) (S2
Table). Mean abundance also fluctuated across stations, with Kdmpersvik, Skalhavet, and Marstrand exhibiting the high-
est densities (>2,000 ind.m-2), while Gottskarsvikens (177 ind.m-2) and Kvarneviken (314 ind.m-2) had the lowest (Fig 2,
Table 1).

The n-MDS ordination plot (Fig 3) revealed no clear clustering of infaunal composition across meadows, although some
site centroids were positioned farther from the ordination centre, reflecting community divergence. Importantly, Finsbo
(FNSB) was distinguised by a high chironomids abundance, Lindholmen (LDHL) by elevated densities of Corophium volu-
tator and Ericthonius difformis, Marstrand (MRST) by Scoloplos armiger, North Lindholmen (NLH) by Capitella capitata
and Kvarnekilen (KKNS) by the highest nematode abundances (S2 Table). Overall, infaunal composition exhibited high
spatial variability among meadows, driven primarily by differences in the relative abundances of Oligochaetes, Corophium
volutator, Nematodes, Scoloplos armiger, Erichtonius difformis, Chironomids, Capitella capitata, and Gammarus locusta
(Fig 3).

Db-RDA showed that maximum fetch, Z. marina biomass, and Chorda filum biomass were the most influential predic-
tors of infaunal assemblage variation across sites. The first two canonical axes explained 61.4% of the total variation (Axis
1=33.7%, Axis 2=27.7%) (Fig 4).

Comparisons of nested Generalized Linear Models (GLMs) using analysis of deviance showed consistent relationships
between environmental predictors and infaunal composition, with Akaike Information Criterion (AIC) supporting the same
pattern. Both models achieved comparable fit across the 15 Z. marina meadows. Model 1 (Z. marina biomass, Chorda
filum biomass, Fucus serratus biomass, and maximum fetch), identified Z. marina biomass (p=0.036) and maximum fetch
(p=0.042) as significant predictors. Model 2 (Model 1 plus biomass of Polysiphonia sp., Cladophora sp., Aglaothamnion
sp., and Dictyota sp.), produced similar results: Z. marina biomass remained significant (p=0.039), and maximum fetch
was marginally significant (p=0.080). In both models, the remaining algal biomasses contributed little or no explanatory
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Fig 2. Mean abundances of dominant infauna species. Mean abundances (ind.m?2+ SE) of the most abundant infauna species in each of the 15
Zostera marina meadows sampled in 2018 along the Swedish west coast.

https://doi.org/10.1371/journal.pone.0334934.9002

power. In both models, the remaining algal biomasses contributed little additional explanatory power. Overall, the GLMs
consistently highlighted Z. marina biomass and maximum fetch as the primary predictors of infaunal community composi-
tion (Table 3).

Biotic indices
Contrasting results were obtained in the ecological status assessment of the sampling meadows. AMBI values pre-
sented the most optimistic scenario, varying widely across meadows, from 1.17 (“undisturbed”) in Gottskarsviken to 4.49
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Fig 3. n-MDS of infaunal assemblages in Zostera marina meadows. Non-metric multidimensional scaling (n-MDS) of replicate samples (n=88)
from 15 Z. marina meadows, based on Bray—Curtis dissimilarity of relative abundances. Points are coloured by site; larger circles with black outlines
represent site-level centroids. Vectors indicate taxa most strongly correlated with the ordination (envfit, p<0.013) (Stress: 0.19; 3D solution). BJRNH,

Bjornholmen; BTTN, Bottnefjord; FNSB, Finsbo; GTTSK, Gottskarsviken; HJLT, Hjalton; KKNS, Kakenas; KMPR, Kédmpersvik; LDHL, Lindholmen;

MRST, Marstrand; NLH, N. Lindholmen; SKLH, Skalhavet; SLSN, Slussen; STRD, S. Stridsfjorden; VLN, Valon.

https://doi.org/10.137 1/journal.pone.0334934.9003

(“moderately disturbed”) in Marstrand (Table 4). The mean AMBI value was 3.15, corresponding to a “slightly disturbed”
ecological status. With the exception of Gottskarsviken (“undisturbed”), all stations fell into either the “slightly disturbed” or

“‘moderately disturbed” categories.

Due to a low number of species in Gottskarsviken and the dominance of chironomids and oligochaetes in Kakenas,
NSI and ISI indices were not assigned to these stations (S2 Table). In contrast, the BENTIX index exhibited little variation,

ranging from 2 to 2.51 (Table 4).

M-AMBI varied between 0.48 (Finsbo) and 0.91 (Skalhavet), with a mean of 0.69 (“moderately disturbed”). Three

meadows were classified as “undisturbed”: Lindholmen (0.77), Kadmpersvik (0.84), and Skalhavet (0.91). Two meadows
were categorized as “moderately disturbed”: Finsbo (0.48) and Kvarnekilen (0.51). The remaining sampling stations were

identified as “slightly disturbed”, with values ranging from 0.56 to 0.76 (Table 4).

BQI varied greatly across the sampled Z. marina meadows, with a mean value of 4.31, corresponding to a “Good”
ecological status. The lowest BQI values were recorded in Kvarnekilen (1.71, “Poor”) and Finsbo (1.70, “Poor”), whereas

the highest were found in Lindholmen (7.12, “High ecological status”) and Skalhavet (6.67, “High ecological status”)

(Table 4).
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Fig 4. Distance-based redundancy analysis (db-RDA) ordination plot of infaunal assemblages. The ellipses represent 95% confidence intervals
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tal variables structuring infaunal communities across Zostera marina meadows. Only the first two canonical axes are shown.
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Table 3. Multivariate Generalized Linear Model (GLM) results testing the relationship between infaunal assemblage structure and environmen-
tal variables in Zostera marina meadows.

Res. Df Df. diff Dev Pr(<Dev)
Model 1
(Intercept) 89
Infauna x Zostera marina biomass 88 1 20.20 0.036**
Infauna x Chorda filum biomass 87 1 19.14 0.243
Infauna x Maximum fetch 85 1 52.26 0.042%*
Model 2
Infauna x Zostera marina biomass 88 1 20.20 0.039**
Infauna x Chorda filum biomass 87 1 19.14 0.225
Infauna x Fucus serratus biomass 86 1 13.07 0.620
Infauna x Maximum fetch 85 1 53.90 0.080*
Infauna x Filamentous CottonBall biomass 84 1 28.37 0.342
Infauna x Chlorophyceae biomass 83 1 46.41 0.265
Infauna x Filamentous_red biomass 82 1 13.05 0.644
Infauna x Dictyota sp. 81 1 9.42 0.606

Model 1 includes three variables identified as the most influential from the db-RDA biplot. Model 2 includes all available predictors. Significance levels:
p<0.05 ** p<0.1*

https://doi.org/10.1371/journal.pone.0334934.t003
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Table 4. Ecological indices and quality status of infaunal communities.

N° Meadow name N S H’ AMBI ‘ M-AMBI ISI NSI BQl BENTIX
1 N. Lindholmen 393 (236-707) 8 1.77 3.82 13.47 3.1 2.00
2 Kvarnekilen 314 (118-589) 6 1.44 3.42 ‘ 0.51 19.03 1.71 2.00
3 S. Stridsfjorden 471 (236-707) 11 1.96 16.51 2.29
4 Kampersvik 2414 (707-5300) 17 2.03 3.54 5.65 16.12 2.51
5 Valon 903 (118-1767) 11 1.95 4.18 5.66 12.00 2.0

6 Bottnefjord 883 (353-1413) 9 1.74 4.32 4.74 13.07 3.93 2.00
7 Finsbo 1610 (1295-2238) 7 0.97 3.45 0.48 13.27 1.70 2.21
8 Lindholmen 923 (353-2238) 11 1.87 2.00
9 Slussen 903 (707-1531) 9 1.50 3.89 6.53 2.00
10 Hjalton 1295 (707-2709) 12 1.70 5.24 18.37 2.00
1" Skalhavet 2885 (1178-4240) 15 2.25 7.30 2.193
12 Bjornholmen 687 (118—1413) 10 2.1 3.37 2.00
13 Kakenas 1963 (1178-4240) 9 1.83 NaN ‘ NaN 2.00
14 Marstrand 2257 (471-4946) 10 1.24 6.86 2.46 2.00
15 Gottskarsviken 177 (118-353) 6 1.74 NaN ‘ NaN 2.00

Total abundance (N, mean values per m? with total range in brackets), species richness (S), Shannon diversity index (H’), and benthic biotic indices with
their ecological quality status: AZTI's Marine Biotic Index (AMBI), Norwegian Sensitivity Index (NSI), Indicator Species Index (ISI), BENTIX and M-AMBI
for the analysed datasets. The ecological quality status for AMBI follows this color scheme: Undisturbed =Blue; Slightly disturbed = Green; and Moder-
ately disturbed =Yellow. For M-AMBI, I1SI and NSI indexes, the ecological quality status is represented as Blue =Very Good; Green=Good; Yellow =Mod-
erate; Orange =Bad; and Red=Very Bad. The coloration applied in BQI follows WFD recommendations; Red =Bad, Orange =Poor, Yellow =Moderate,
Green=Good, and Blue =High ecological status.

https://doi.org/10.1371/journal.pone.0334934.t004

Comparative functional approach between infauna, epifauna, and environmental variables

Analyses used the first four principal components, which together explained 91.4% of the variance, with the default per-
axis bandwidth. Twelve replicates with one or no species were excluded. From the remaining data, 237 hypervolumes
were reconstructed. The functional space showed only slight polarization (S1 Fig.); nevertheless, functional diversity, dis-
persion, and evenness differed significantly among assemblages. Specifically, functional diversity was significantly higher
in large epifauna compared to infauna (W=3531, p=0.026) and between small and large epifauna (W=4112, p<0.05).
Functional evenness was significantly lower in small epifauna compared to both large epifauna (W=6067, p<0.001) and
infauna (W=532, p<0.001) (Fig 5f). Marginally significant differences were also found between large and small epifauna
(W=4103, p=0.009) and between small epifauna and infauna (W=3608, p=0.082) (Fig 5a—5c). Within each community,
no clear trends were observed regarding the degree of wave exposure across meadows (Fig 5d—5¢).

Comparison of infaunal and epifaunal communities based on univariate descriptors (Shannon diversity, Pielou’s evenness,
Hurlbert index, individual abundance, and species richness) showed no consistent patterns (Table 5). Additionally, correlations
between infaunal descriptors and biomass of Z. marina and associated algae revealed no clear trends, except for two signifi-
cant relationships, (i) Species richness vs. Z. marina biomass and (ii) Species richness vs. Polysiphonia sp. biomass (Table 5).

Discussion
Infaunal assemblages dynamics and environmental drivers

Infaunal assemblages varied among meadows in the study area, primarily due to shifts in the most abundant taxa,
namely the capitellid polychaete Capitella capitata, Ericthonius difformis, Scoloplos armiger, oligochaetes, nematodes,
and chironomids. In contrast, non-dominant taxa played a minor role in differentiating infaunal assemblages among the
sampled stations. Although Zostera marina meadows are known to provide stable and favourable conditions for infaunal
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Fig 5. Functional richness, dispersion, and evenness across large and small epifauna, and infaunal communities and wave exposure levels.
Overall differences in (a) functional richness, (b) functional dispersion, and (c) functional evenness between habitats, as well as across meadows with
varying degrees of wave exposure (d-f). Epifauna data extracted from Riera et al. [26].

https://doi.org/10.137 1/journal.pone.0334934.9005

communities — such as sediment stability, reduced water movement, and increased sedimentation facilitated by their
rhizomes and roots [58] — the studied meadows supported a low-diversity infaunal assemblage. Our site-level analysis
highlights that variation in Z. marina biomass and Maximum Fetch are the primary environmental drivers structuring infau-
nal communities.

Studies on infauna from Scandinavian Z. marina meadows are limited and heterogeneous in terms of methodologies
and spatio-temporal sampling efforts [19,59—61]. Collectively, these studies indicate that infaunal abundance in Z. marina
meadows is three times higher than in adjacent non-vegetated sediments [59,61]. This difference may be attributed to
variations in grain size and organic content (e.g., Dahl et al. [28]; Baden & Pihl [30,60]) as well as the increased habitat
complexity provided by rhizomes.
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Table 5. Correlation between infaunal parameters, epifauna, and environmental variables.

Variable Infauna vs. Infauna vs. Infauna vs. Infauna vs. Infauna vs. Infauna vs.
Large Small Zostera marina Chorda filum Polysiphonia Fucus serratus
Epifauna Epifauna biomass biomass sp. biomass biomass

Abundance -0.196 -0.113 -0.324 0.069 0.312 -0.144

Richness (S) -0.091 0 -0.463* 0.139 0.571** -0.328

Shannon-Wiener Index (H’) 0.087 -0.027 - - - -

Pielou’s Evenness (J’) 0.165 -0.284 - - - -

Hurlbert index (ES50) -0.105 -0.024 - - - -

Correlation coefficients relating univariate parameters of infauna with epifauna and environmental variables. Significance levels: p<0.001 ***; p<0.05
** p<0.1*. Epifauna data extracted from Riera et al. [26].

https://doi.org/10.1371/journal.pone.0334934.t005

Wave exposure can influence meadow distribution [62] and reduce seagrass survival through erosion [63,64], which
in turn affects sediment grain size and habitat suitability for benthic invertebrates. Grain size is largely governed by flow
velocities, particularly by the threshold of critical shear stress required to mobilise sediment particles [65,66]. Species rich-
ness within infaunal communities often increases with coarser sediments due to enhanced pore-water flow [67,68] due to
enhanced pore-water flow, as observed in exposed sampling stations. Although we lacked direct grain size measurements
or finding that Maximum Fetch significantly predicts community composition suggests that hydrodynamic forcing plays a
key role.

Seagrass canopies attenuate wave energy by slowing the water flow beneath the leaves, promoting fine-sediment
deposition and creating stable microhabitats for benthic organisms, including infauna and larvae settlement [69-72]. In
our study, wave exposure — quantified by Maximum Fetch- emerged as one of the most influential environmental drivers
shaping infaunal community composition, alongside with Zostera marina biomass. However, species richness did not vary
consistently with exposure level: the highest value was recorded at a semi-sheltered meadow (Kampersvik), while both
sheltered (Kvarnekilen) and exposed (Gottskarsviken) meadows exhibited the lowest richness (Table 5). Other univariate
descriptors, such as individual abundance and evenness, also showed no clear patterns across the exposure gradient.

Historical data are available for Norra Lindholmen (1999), Finsbo (1980-82, 1999), and Lindholmen (1982, 1999)
[19,60]. Infaunal abundance at these stations exhibited significant spatial and temporal variability. However, a marked
15-fold decline has been reported when comparing data from the 1980s and 1990s to the present study. A similar down-
ward trend was observed in epifaunal assemblages of Z. marina in the study area, largely driven by declines in small
amphipods and Mytilus edulis plantigrades [19,25,60,73]. Infaunal changes over the past four decades appear closely
linked to declining coastal environmental quality.

Biotic indices and constraints in ecological assessment

Ecological status was assesses using six biotic indices: AMBI, M-AMBI, BENTIX, ISI, NSI, BQI. These revealed a wide
range of conditions across stations, from “Bad” to “Very Good.”. ISI, NSI, and BENTIX displayed the greatest variability
among meadows, while AMBI and M-AMBI yielded more intermediate scores. Most Zostera marina meadows were neither
heavily disturbed nor fully undisturbed. Some sampling stations (e.g., Marstrand and Finsbo) were consistently classified
as moderately disturbed, reflecting high abundances of the opportunistic polychaete Capitella capitata (Marstrand) and
chironomid larvae (Finsbo). These taxa are widely recognised as indicators of degraded water and sediment conditions
[74,75] and contributed to reduced richness and evenness. Continued inter-calibration of biotic indices across water body
types remains essential for ensuring consistent and reliable ecological assessments [76]. At Marstrand, long-term decline
in eelgrass cover has been attributed to sediment resuspension and associated turbidity [26,77], while Finsbo proximity to
a busy ferry route may contribute to ongoing environmental stress.
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Caution is warranted when interpreting biotic index results, as several stations exhibited very low species richness,
while others were dominated by taxa identified only to higher taxonomic levels- factor that affected the performance of
indices such as BENTIX, ISI, and NSI. Additionally, a substantial proportion of taxa could not be assigned to specific eco-
logical groups. The indices applied in this study have traditionally been used in unvegetated subtidal sediments at depths
greater than 5 m and to our knowledge, this represents their first application in shallow Zostera marina meadows (1-5 m
depth). Although not originally designed for intertidal or shallow habitats, recent studies have shown promising outcomes
when applied to broad intertidal zones with tidal ranges exceeding >2 m (e.g., [78]). However, shallow subtidal environ-
ments (1-5 m) remain poorly represented in ecological assessments compared to deeper sandy seabeds, including those
within fjords, coastal lagoons, and estuaries (see [13,78]). In this study, sampling was conducted in Z. marina meadows at
depths between 1.5 and 3 m. Early work by Gislen [79] documented eelgrass beds ranging from 0.9 to 8.4 m, whereas the
current mean maximum depth is approximately 4 m [26,80], reflecting a notable reduction in Z. marina habitat along the
Swedish Skagerrak coast since 1926.

Epifauna-infauna interactions, functional traits and long-term trends

Changes in the composition and proliferation of epiphytic algae on Z. marina leaves may indirectly influence infaunal
assemblages, given the trophic and functional interdependence between epifaunal and infaunal communities. However,
no significant correlations were found between infaunal and epifaunal assemblages at the sampled meadows, suggest-
ing that these groups respond differently to variation in Z. marina meadow structure. One possible explanation lies in

the influence of seagrass roots and rhizomes on sedimentary conditions, including reduced sediment erosion [72] and
microbial-driven processes such as nutrient cycling and organic matter decomposition [81]. Notably, belowground biomass
production in many seagrasses can equal that of leaf tissue [82]. Several studies have highlighted the importance of bur-
ied seagrass structures in shaping infaunal communities. Although some degree of epifauna-infauna interdependence is
likely, epifaunal assemblages appear to respond more directly to aboveground features, with denser Z. marina meadows
typically supporting higher epifaunal diversity and abundance than sparse ones [26].

Functional hypervolume analysis of large and small epifauna, as well as infauna, revealed limited differentiation among
these communities. Nevertheless, some functional metrics differed significantly across assemblages. These findings
indicate that both epifauna and infauna communities contribute similarly to the overall functional space of Z. marina
meadows, with no distinct segregation in trait composition. Their contributions, however, vary in quantitative terms. Large
epifauna and infauna were predominantly composed of species with intermediate densities, whereas small epifauna
were dominated by two to three amphipod species, resulting in lower functional diversity and evenness. A relatively high
number of species were shared between epifaunal and infaunal habitats. Although typically recorded at low abundances,
these species contributed to the homogenization of functional space, particularly when traits were assessed at the species
level rather than the individual level. To better resolve potential functional differences, future studies should incorporate
measurements of morphological traits, particularly body size, at the individual level within each environment. This could
reveal stronger functional contrasts, as Z. marina leaves and sediments may serve as distinct microhabitats for different
developmental stages of a given species. Similar ontogenetic habitat shifts have been documented in meiofauna within
Posidonia oceanica meadows, where dominant mite species display clear life-stage-specific habitat preferences d [42,43].

From a temporal perspective, epifaunal assemblages exhibited clear trends when compared to historical data, reflect-
ing broad regional shifts in Z. marina-associated fauna over the past two decades [26]. In contrast, the paucity of historical
data on infaunal communities limits our ability to assess long-term changes in these assemblages. The regression of Z.
marina meadows over recent decades appears to affect not only the seagrass itself—an important ecosystem engineer—
but also associated biota, including epifauna, infauna, and fish. While epifaunal trends were relatively coherent across
meadows, infaunal communities showed high spatial variability, suggesting site-specific differences among meadows.
Riera et al. [26,83] demonstrated that large and small epifauna serve as effective proxies for detecting changes in Z.
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marina meadows in Skagerrak region. In contrast, infaunal patterns were more heterogeneous, and no consistent cor-
relations emerged between epifaunal and infaunal communities. This aligns with findings by Reiss et al. [8], who reported
significant correlations between the two groups only in terms of species richness.

Integrative ecological insights and management implications

This integrative analysis identified Zostera marina biomass and Maximum Fetch as key drivers of infaunal community
structure along the Skagerrak coast. These factors influenced infaunal composition independently of biotic indices used
to assess ecosystem condition and appeared more influential than the presence of other associated faunal groups, such
as epifauna. The structural complexity provided by seagrass rhizomes and their stabilising role in exposed environments
underscore the ecological importance of Z. marina meadows. Infaunal assemblages offer valuable insights into sediment
quality and are sensitive to multiple stressors, including detritus accumulation, hydrodynamic conditions, and contamina-
tion. In parallel, the composition of epiphytic algae plays a critical role in shaping epifaunal communities, highlighting the
need to consider both above- and belowground processes when assessing the integrity of seagrass ecosystems.

Infaunal communities are widely used as bioindicators of ecological condition, as shifts in their composition often reflect
increasing levels of environment disturbance [15]. Given their ecological relevance, Z. marina meadows and their associ-
ated infaunal assemblages should be integrated into coastal management strategies, particularly in restoration planning
and efforts to mitigate environmental stressors. The pronounced spatial variability in infauna composition observed across
the study area also suggests potential differences in underlying ecosystem processes, such as secondary production and
fine-scale sedimentary dynamics, which merit further investigation.

The integrative framework applied in this study may also be extended to other coastal ecosystems, including salt
marshes, estuarine and lagoon environments. These habitats support diverse infaunal and epifaunal communities that,
when assessed together, offer a more holistic view of ecosystem functioning. Such an approach addresses important
gaps in ecological evaluation that arise when studies focus on a single biological component—such as epifauna—while
overlooking other communities and key environmental drivers like maximum fetch.

Conclusions

This study highlights the complex interplay between physical drivers, habitat structure, and benthic community compo-
sition in Zostera marina meadows along the Skagerrak coast. Infaunal assemblages showed marked spatial variability,
primarily driven by variation in Z. marina biomass and hydrodynamic exposure (Maximum Fetch). These factors shaped
community composition regardless of biotic indices or associated faunal groups, reinforcing the need to consider structural
habitat attributes and local environmental forcing in benthic assessments.

Although Z. marina meadows are typically associated with enhanced biodiversity, the observed low infaunal diversity
and the dominance of opportunistic taxa in some locations indicate potential environmental stress. Biotic indices provided
useful, though occasionally inconsistent, insights into ecological condition due to limitations in taxonomic resolution and
the application of indices developed for deeper, unvegetated sediments.

Functional trait analysis revealed that both epifaunal and infaunal communities contribute similarly to the overall eco-
logical functioning of seagrass meadows, despite compositional differences. Their combined assessment provides a more
complete picture of benthic ecosystem integrity, especially when informed by traits at the individual level.

Long-term data revealed significant declines in infaunal abundance over recent decades, mirroring known reductions
in Z. marina coverage and environmental quality. This emphasizes the importance of long-term monitoring and habitat
conservation. The integrative framework applied here—linking physical habitat characteristics with taxonomic and func-
tional metrics of multiple faunal groups—offers a promising approach for ecological assessment and coastal management.
Its application to other shallow coastal habitats could improve our ability to detect and respond to environmental change at
ecologically meaningful scales.
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Supporting information
S1 Table. Trait assignment matrix for infaunal and epifaunal taxa [see 36—39 for details].
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