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Abstract

Unmanned aerial vehicles (UAVs) are widely
used for mapping and monitoring coastal ecosys-
tems due to their high accuracy and efficiency,
providing surveys that are less costly and time-
consuming compared to vessel-based methods.
This study demonstrates the utility of using UAV
imagery combined with ground surveys to evalu-
ate the spatial distribution of dugong (Dugong
dugon) foraging based on their feeding trails and
associated intertidal seagrass beds in (1) Dugong
Tower and (2) Juhoi, Libong Island, Thailand,
and (3) Saco, Inhaca Island, Mozambique, as
well as the temporal distribution of dugong feed-
ing trails on Mook Island, Thailand. Ground
survey results showed that small- and medium-
sized seagrass species are the most preferred by
dugongs. RGB images capture detailed plant
characteristics, while NDVI images assess veg-
etation density, with higher values indicating
denser vegetation. In denser areas (e.g., Juhoi),
both images detected feeding trails, with RGB
identifying distinct trails and NDVI highlighting
contrasts. In sparse areas (e.g., Dugong Tower
and Saco), NDVI provided clearer detection.
However, UAVs may be limited by restricted
flight endurance and sea state conditions, as well
as by water level, turbidity, and sun glint. This
study highlights the potential of drones to survey
and monitor dugong populations indirectly,
assisting coastal managers in assessing seagrass
availability for dugongs and observing dugong
behavior in their natural habitat, particularly in
hotspot areas.
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Introduction

Unmanned aerial vehicles (UAVs), also known
as drones, are increasingly being utilized to expe-
dite ground-based observations, significantly
reducing time and labor compared to vessel- or
airplane-based surveys. The prevailing trend in
research is to favor multirotors, primarily due
to their straightforward control mechanisms and
accurate positioning capabilities. Additionally,
the cost-effectiveness of UAV monitoring stands
out as a viable option when contrasted with obser-
vation techniques involving airplanes or heli-
copters (Schofield et al., 2019). Within the field
of aquatic wildlife science, UAVs play various
roles, including monitoring the abundance of ani-
mals (Cleguer et al., 2021), conducting popula-
tion assessments (Hodgson et al., 2013), making
individual identifications (Ryan et al., 2022),
evaluating body size and condition (Infantes
et al., 2022; Ramos et al., 2022; Carroll et al.,
2024), and mapping habitat (Cossa et al., 2023).
UAVs are being deployed to elucidate several
aspects of dugong ecology, biology, and behavior
(Infantes et al., 2020), particularly in estimating
the abundance of dugongs (Raoult et al., 2020).
Due to the elusive behavior of dugongs (Dugong
dugon), accurately determining the sizes of indi-
vidual populations is challenging.

Dugong feeding trails are formed when dugongs
graze up seagrasses, including their roots, leaving a
shallow, meandering track of about equal width and
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depth (Preen, 1995). The feeding trails can be used
as an indicator of their feeding ground utilization
(Marsh et al., 2011). The recovery of seagrass fol-
lowing disturbances caused by dugong herbivory
was estimated to be relatively rapid for Halophila
ovalis, occurring in less than 20 d (Nakaoka &
Aioi, 1999). In contrast, other seagrass species,
such as Cymodocea spp. and Thalassia spp., may
take longer to recover due to their slower growth
rates and differences in resilience (Kilminster et al.,
2015). Recovery times can also be influenced by
environmental factors, including water quality,
sediment stability, and grazing intensity. However,
tracking dugong feeding trails is a method that indi-
rectly monitors their presence and feeding activity,
which could contribute to conservation and man-
agement. Moreover, these trails can be geolocated
and mapped out for pattern analysis.

Monitoring the distribution of dugong feed-
ing trails in intertidal seagrass areas has been
proven to be an effective approach for observing
detailed dugong feeding behavior. As dugongs
uproot entire plants, the leaves, rhizomes, and
roots of seagrasses become exposed along the
edges of their feeding trails (Marsh et al., 2011).
These trails serve as direct evidence of feeding
activity and provide crucial data on feeding loca-
tion, seagrass consumption, and feeding direction
(Budiarsa et al., 2021). In traditional techniques,
researchers target areas within seagrass mead-
ows—a unified ecological habitat characterized
by continuous or semi-continuous seagrass, often
comprising one or more species—along transects
to gather information on seagrass. For instance,
the species and percent coverage of grazed sea-
grass are determined by assessing the seagrass
composition along the observed dugong feeding
trails and measuring the width and length of the
trails (Preen, 1995; Yamamuro & Chirapart, 2005;
Budiarsa et al., 2021). However, these methods
consume a lot of manpower and time, cover-
ing only a small area of the intertidal seagrass
meadow due to time and tide constraints (Murfitt
etal., 2017).

In recent years, there has been a rise in the uti-
lization of UAVs as an affordable and effective
monitoring solution in various contexts. The use
of UAVs has demonstrated their utility in assessing
the presence or absence of seagrass cover (Duffy
etal.,2018b; Price et al., 2022) and in differentiat-
ing seagrass species (Hamad et al., 2022; Tahara
et al., 2022; Karang et al., 2024). Additionally,
some studies have attempted to discriminate sea-
grass species from seaweed (Romén et al., 2021),
coral, and unvegetated areas such as rock and bare
sediment (Nababan et al., 2021; Riniatsih et al.,
2021). Nevertheless, there are few methods using
UAVs to observe dugong feeding trails. Yamato

et al. (2021) used deep neural networks-based
automated extraction to detect changes in position
from UAV images and to identify dugong feed-
ing trails in intertidal seagrass beds. Meanwhile,
Cossa et al. (2023) employed UAVs and machine-
learning techniques to monitor dugong feeding
grounds and evaluate the influence of gillnet
fishing activities on these areas. Therefore, some
researchers have monitored and mapped seagrass
and dugong feeding trail distributions in intertidal
zones, providing important information for the
conservation and management of seagrass habi-
tats in coastal zones.

In this study, we present a cost-effective aerial
survey approach for identifying dugong feed-
ing grounds in intertidal seagrass meadows. We
also provide examples of seagrass classification
schemes. Additionally, we combine this aerial
survey information with ground surveys to obtain
estimates of meadow area and the distribution of
dugong feeding trails in Libong Island and Mook
Island in southern Thailand, as well as in Inhaca
Island in southern Mozambique.

Methods

Study Site and Data Acquisition
Our study involves a spatial assessment con-
ducted across three distinct areas: (1) Dugong
Tower and (2) Juhoi in Libong Island, Trang,
Thailand (Figure 1A), and (3) Saco, Inhaca Island,
Mozambique (Figure 1B). We also conducted
a temporal assessment within one area in Mook
Island, Trang Province, Thailand (Figure 1A).
For the spatial assessment of dugong feeding
trails study, the imagery was obtained from three
study sites: (1) Dugong Tower and (2) Juhoi in
Libong Island, Trang, Thailand, during a compre-
hensive survey of dugong reproductive behav-
ior conducted around the island in February
2019 and February 2020 (Infantes et al., 2020;
Figure 1A; Table 1), and (3) Saco, Inhaca
Island, Mozambique, as reported by Cossa et al.
(2023; Figure 1B; Table 1). The percent sea-
grass coverage in Libong Island ranged from
20 to 40%, with six identified species: Enhalus
acoroides, Cymodocea rotundata, Halophila
ovalis, Halodule pinifolia, Halodule uninervis,
and Thalassia hemprichii. Seagrass meadows
at Inhaca Island cover approximately 50% of
the intertidal areas around the island with nine
identified species: C. rotundata, Oceana serru-
lata (formerly C. serrulata), H. ovalis, H. uni-
nervis, T. hemprichii, Thalassodendron cilia-
tum, Thalassodendron leptocule, Syringodium
isoetifolium, and Zostera capensis (Bandeira &
Gullstrom, 2014). The aerial surveys for these
studies were conducted at an altitude of 80 m in
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Figure 1. Map of the study sites (shown as stars) in (A) Mook Island and Libong Island (including the two sites: Dugong
Tower and Juhoi), Trang Province, Southern Thailand, and (B) Saco, Inhaca Island, Maputo Province, Southern Mozambique

Table 1. Drone flight information

Image Date Area cover Camera Resolution No. of Flight time
used Sites (d/moly) Seasons (km?) model (cm pixel™) images (min)
_ Dugong 24/2/2020 Dry 0.10 RGB 2.18 194 18
é Tower 24/2/2020 0.14 Multispectral 5.56 274 15
% 26/2/2020 0.16 RGB 2.18 229 15

2] Juhoi Dry
= 26/2/2020 0.35 Multispectral 5.56 688 42
é« 19/11/2018 0.15 RGB 2.18 298 18
Saco Wet
19/11/2018 0.10 Multispectral 5.56 199 11
2/7/2020 0.24 2.18 454 31
g 18/8/2020 Wet 044 2.18 837 62
£
% 13/11/2020 0.24 2.18 453 26
s Mook | 6/12/2020 0.20 RGB 2.18 380 23
= Island
g, 12/2/2021 0.14 2.18 275 17
£ Dry
= 14/3/2021 0.29 2.18 558 35
10/4/2021 0.20 2.18 366 22
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the intertidal zone during the lowest tide of each
study site (Table 1). The UAV was flown in regu-
lar transects in pre-programmed flights using pix-
4DCapture or DroneDeploy® software, a survey
planning software for drone mapping, covering
the entire area. The front and side image overlaps
were set to 80 and 60%, respectively. The vis-
ible (RGB) imagery was obtained using a quad-
copter drone (Phantom 4 Pro, Version 2.0; DJI,
Nanshan, Shenzhen, China) with RGB camera
models, and the multispectral imagery was con-
ducted using a multispectral camera (Micasense;
Red Edge, Arlington, VA, USA) on a quadcop-
ter drone (Matrice 200, DJI) (Table 1). Ground-
truth observations were conducted concurrently
with the aerial surveys to collect spatially refer-
enced data on seagrass meadows using a modi-
fied spot-check methodology (McKenzie, 2006).
A total of 30 to 50 observations were recorded,
including geographic coordinates (latitude and
longitude), seagrass species, and percentage
cover. Geographic coordinates were recorded as
waypoints utilizing Garmin GPSMap eTrex 30
devices, achieving positional accuracy of +5 m.
Seagrass species and cover percentage were
assessed within 50 x 50 cm quadrats. These
ground-truth observations were later compared
with the UAV orthomosaic through manual
visual interpretation (Trinh et al., 2023). The
field data provided foundational training data for
the UAV orthomosaic classification.

To examine the temporal assessment of
dugong feeding trails, ground-truth data and
imagery were obtained from July 2020 to April
2021 at Mook Island, Trang Province, Thailand
(Figure 1A; Table 1). The percentage cover of
seagrass in the area ranged from 17 to 34%, with
six identified species identified: E. acoroides,
C. rotundata, H. ovalis, H. pinifolia, H. uniner-
vis, and T. hemprichii. UAV flights were per-
formed, covering approximately 0.39 km? in the
northeast intertidal seagrass meadows of Mook
Island during low tide (Table 1). To ensure con-
sistency, the flights were conducted using the
same method as the RGB imagery for the spatial
assessment. The ground-truth observations were
conducted during the spring tide period when
the intertidal seagrass beds were exposed to air.
Five hundred 50 x 50 cm quadrats were placed
in 15 m intervals from each other in the study
area, covering a total area of around 0.115 km?.
The ground positioning of each quadrat was
marked using waypoints on a handheld Garmin
GPSMap eTrex 30 placed at the center of each
quadrant. Subsequently, the species and percent-
age cover of seagrass within the quadrats were
recorded following standard Seagrass-Watch
protocols (McKenzie, 2006).

Image Processing and Identification of
Dugong Feeding Trails
All the images were processed using the Agisoft
PhotoScan (Agisoft LLC, St. Petersburg, Russia)
to generate orthomosaics (aerial maps) of the
study areas. RGB color orthomosaics were gen-
erated from red (R), green (G), and blue (B)
bands. The multispectral orthomosaics were built
for each of the five bands (R, G, B, near-infra-
red [NIR], and Red Edge). The process included
alignment, optimization, Digital Elevation Model
(DEM), and orthomosaic building, and then sepa-
rating orthomosaics per band by using the raster
calculator. Normalized Difference Vegetation
Index (NDVI) maps were generated from R and
NIR bands. NDVI is specifically designed to
highlight variations in vegetation health. It cal-
culates the difference between NIR and R reflec-
tance, emphasizing the presence and condition
of vegetation (Chen et al., 2021; Huang et al.,
2021). The NDVI formula can be expressed as
follows (Li et al., 2023):

NIR-R

NDVI= < irer M

NDVI varies between -1 to +1. The higher
values suggest healthy vegetation (NIR > R, a
value close to +1), lower values indicate bare soil
or stressed vegetation (R > NIR, a value close to
-1), and values near O represent neutral or mixed
areas (NIR = R) (Figure S1; the supplemental fig-
ures for this article are available on the Aquatic
Mammals website).

The comparison between RGB and NDVT high-
lights two key insights: (1) differences in vegeta-
tion characteristics and density, and (2) feeding
trail detection. RGB images provide detailed
information on plant characteristics, such as color
variations that may indicate species, while NDVI
images are better suited for assessing vegetative
density.

Dugong feeding trails can be identified gener-
ally as sinuous paths of clear substrate through
patches of seagrass. Their width is recognizable
as being between 9 to 30 cm (Adulyanukosol
et al., n.d.; Shawky, 2019; Tsutsumi et al., 2000).
The dugong feeding trails were quite different
from other features found in seagrass such as
boat propeller scars or boring by other animals
(Figure S2). In this study, only dugong feeding
trails that clearly occurred within seagrass mead-
ows were used in the analysis.

The spatial assessment of dugong feeding trails
was conducted on orthomosaics at three loca-
tions— (1) Dugong Tower and (2) Juhoi in Libong
Island, Trang, Thailand, and (3) Saco, Inhaca
Island, Mozambique —using QGIS, Version 3.28.3
(QGIS Development Team, 2023), for both RGB
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Figure 2. The identification of dugong (Dugong dugon) feeding trails for spatial assessment: (A) example of the three
targeted sampling areas (1 ha), numbered 1 to 3; (B) zooming to the targeted sampling area 1, with 10 x 10 m grid template
and template applied to mosaic ready for assessment (blue square indicates the cell shown in C and D); (C) zooming to one
10 x 10 m cell; (D) manually drawing lines along the dugong feeding trails (line layer); (E) the trail abundance in sampling

area 1; and (F) example of the length and width measurement.

and NDVI maps. Three targeted sampling areas
(10,000 m?, 1 ha) were randomly created in the
hotspot of the dugong feeding trail in each site;
these excluded obvious vegetated land areas and
deep water (Figure 2A). A fixed grid template with
10 x 10 m cells was created to overlay on the tar-
geted sampling area (Figure 2B). Each individual
grid cell (10 x 10 m; Figure 2C) was assessed by
the Seaweed and Seagrass Research Unit (SSRU)
staff with experience in locating dugong feeding
trails in the field. For the assessment, SSRU staff
manually drew a line following the trails shown
on an LCD computer monitor at a scale of 1:300
or less (Figure 2D), and then repeated the process
of drawing a line in every grid cell. The line layers
representing the dugong feeding trails in the sam-
pling area (Figure 2E) were used to estimate the
length, average width, and area.

The length (m), average width (m), and area
(m?) of dugong feeding trails in each targeted
sampling area were estimated using the QGIS,
Version 3.28.3 (QGIS Development Team,
2023). The length of the feeding trails was cal-
culated from the line layer using the ‘Geometry’

function and the ‘$length’ expression in the Field
Calculator; the average width of the feeding trails
(Wi The average width at each targeted sampling
area i) was manually measured on the images
three times for each of the 30 randomly selected
trails (Figure 2F) by using the program measure
tools; and the area of the feeding trails was cal-
culated from the line layer using the ‘Geometry’
function and the ‘$length * W’ expression in the
Field Calculator.

The temporal assessment of dugong feeding
trails was conducted on RGB orthomosaics from
Mook Island, Trang Province, Thailand, using
QGIS, Version 3.28.3 (QGIS Development Team,
2023). A fixed grid template with 100 x 100 m
cells was created to overlay on the sampling area
(Figure 3A). Each individual grid cell (100 x
100 m) was assessed by SSRU staff with experi-
ence in locating dugong feeding trails in the field.
For the assessment, SSRU manually drew a line
following the trails shown on an LCD computer
monitor at a scale of 1:300 or less (Figure 3B & C),
and again repeated the process of drawing a line in
every grid cell. The line layer representing dugong
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Figure 3. The identification of dugong feeding trails for temporal assessment involves the following steps: (A) an example
of an RGB orthomosaic, a 100 x 100 m grid template, and the template applied to the mosaic, prepared for assessment (the
blue square indicates the cell shown in B), (B) zooming into a 100 x 100 m grid cell, (C) further zooming into a 10 x 10 m
grid cell and manually drawing lines along the dugong feeding trails (line layer), (D) creating points from the line layer and
using the average trail width to set a point buffer, (E) zooming into a 1 x 1 m grid cell to show the points (black circles) and
buffers (pink squares), and (F) joining the data from step D with the 100 x 100 m grid template, then displaying the quantities
using color to represent values (count of points in each 100 x 100 m grid cell) with class interval.

feeding trails was used to create points utilizing the
average trail width to set a point buffer (Figure 3D
& E) and then joining the point data with the 100 x
100 m grid template and displaying the quantities
using color to represent values (count of points in
each 100 x 100 m grid cell) with class interval. The
formula for class interval that was used to catego-
rize the frequency of the trail can be expressed as
follows:

Max—Min
Class

Class interval = 2)
where Max is the maximum value of the point
count, Min is the minimum value of the point
count, and Class is the number of categories of
dugong feeding trail frequency. In this study,
we divided the trail frequency into five classes:

(1) very low, (2) low, (3) medium, (4) high, and
(5) very high (Figure 3F).

Statistical analyses were performed using
R, Version 4.4.0 for Windows (R Core Team,
2024). Data normality was assessed via the
Shapiro—Wilk test (o = 0.05), and homoscedas-
ticity was assessed with Levene’s test. Dugong
feeding trail data, including the length, width,
and area of the trails, were estimated following
spatial assessment protocols. Length was log10
transformed for normality and variance homo-
geneity. Differences in trail width and length
between months were compared using a one-way
ANOVA, followed by Tukey’s HSD test (a =
0.05) for post hoc comparisons when significant
variances were detected.
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Processing of Seagrass Classification Maps

The seagrass classification was conducted on ortho-
mosaics using RGB maps for the same three targeted
sampling areas used in the spatial assessment study
at three locations as explained: (1) Dugong Tower
and (2) Juhoi on Libong Island, Trang, Thailand,
and (3) Saco on Inhaca Island, Mozambique. The
steps to create the seagrass distribution maps used
to determine the area of seagrass and dugong trail
distribution maps are depicted in Figure 4.

The seagrass boundaries were established in
these targeted sampling areas by generating a
spatial distribution map. The distribution of the
seagrass was done using Maximum Likelihood
Classification (MLC) with open-source software:
‘SCP Plugin’ for QGIS, Version 3.28.3 (QGIS
Development Team, 2023). At each targeted sam-
pling area, the collected ground data points were
randomly divided into two groups of data points

Panyawai et al.

seagrass species level. Based on our targeted sam-
pling area, five seagrass species were identified
(H. ovalis, C. rotundata, T. hemprichii, H. uni-
nervis, and H. uninervis mixed with Z. capensis);
these were used as different classes together with
three classes for barren substrate (rock, sand, and
deep water). Since there was variability in the
seagrass species composition, the number of sea-
grass classes varied from 2 to 3 in Thailand and
2 in Mozambique. Using both the resulting clas-
sification and reference data (validation data), an
error matrix was constructed to calculate Overall
Accuracy (OA), Producer’s Accuracy (PA),
User’s Accuracy (UA), and the Kappa Coefficient
(K), following the method described by Lillesand
et al. (2015). OA indicates the general effective-
ness of the classification process. The formula can
be expressed as follows:

Number of correctly classified samples

for the purpose of image classification training OA = Totul mumber of samples x 100

(70%) and validation of the classified images P

(30%). The image classification was done at the 3)
Feeding trails Seagrass Ground-truth survey
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Figure 4. The processing for seagrass and dugong trail distribution maps
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PA represents the likelihood that a certain land
cover type on the ground-truth data (reference
sample) is correctly classified in the map (omis-
sion error). The formula can be expressed as
follows:

_ Number of correctly classified samples for a class
Total number of reference samples for that class

PA 100

“)

UA refers to the probability that a class in the
map accurately represents what is on the ground
(commission error). The formula can be expressed
as follows:

UA = Number of correctly classified samples for a class 00
Total number of classified samples for that class

(&)

K reflects the proportionate reduction in error
achieved by the classification process compared
to random classification. The K formula can be
expressed as follows:

K= Po—Pe (6)

1-Pe

RGB
Feeding trails

High density

Moderate density

Low density

where Po represents observed agreement and
is equivalent to OA but expressed as a decimal
rather than a percentage (e.g., if OA is 85%, then
Po = 0.85), and Pe represents expected agree-
ment, calculated based on the distribution of
samples across classes. K values range from -1 to
+1. Higher values (K > 0.8) indicate strong agree-
ment, moderate values (K = 0.4 to 0.8) reflect
moderate agreement, and lower values (K < 0.4)
suggest weak agreement.

Results

Comparison of RGB and NDVI Images

When detecting feeding trails, feeding trails were
easy to detect in both RGB and NDVI images
in denser vegetation patches (e.g., Juhoi). RGB
effectively identified distinct trails, while NDVI
highlighted the contrast between vegetated and
non-vegetated areas (Figure 5). Additionally, there
were no significant differences in trail measure-
ments (count, length, or width) between RGB and
NDVI images for Juhoi as shown in Table 2. In
sparse areas (e.g., Dugong Tower and Saco), RGB
images struggled due to visual complexity, while
NDVI provided clearer detection by highlighting

NDVI

Feeding trails

NDVI
Value

P High
B A

Figure 5. The variability of dugong feeding trails in RGB and NDVI images in different seagrass density levels. Note the
same images are compared between the RGB and NDVI columns in each row.
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Table 2. The mean, standard deviation (SD), and significance level (p value) of the comparisons in counts, lengths, and
widths of dugong (Dugong dugon) feeding trails across RGB and NDVI images of each study site

Count Length Width

(no./ha) (m) (m)
Site RGB NDVI p value RGB NDVI p value RGB NDVI p value

. 72133+ | 870.67 £ . . .
Juhoi 56872 5518 0.67 242+£150(194+148| 0.10 024+0.06/025+0.05| 0.66
Dugong| 104.67+ | 69.67 + . . %
Tower 3707 69 64 0.50 317+£1.69(2.15+1.03| 032 0.31+£0.10{0.32+0.10| 0.3
93567+ | 19733+ . oot s

Saco 59678 150.19 0.11 1.08 £0.61|2.39+1.23| 0.002 0.15+0.03]0.24 £0.05 | 0.0006

Note: ns = nonsignificant differences, * = significant differences at p < 0.05, ** = significant differences at p < 0.01, and

*#% = significant differences at p <0.001

vegetative contrasts (Figure 5). However, likely
due to the difficulty in determining the trail
boundary, significant differences in trail widths
between RGB and NDVI images were observed
for Dugong Tower and Saco as shown in Table 2.

UAV-Based Classification of Seagrass Orthophotos
The classification results provide a comprehen-
sive evaluation of performance through several
key metrics (Table 3). The classification achieved
the Kappa Coefficient of 0.66, indicating moder-
ate agreement between the classified data and
ground-truth data. The OA of 92% represents a
high proportion of correctly classified features.
This high OA demonstrates the robustness of
the classification method and suggests it is reli-
able for general analysis and mapping purposes.
The PA of 90% indicates that 90% of the actual
features on the ground were correctly identified
in the classification, with a 10% omission error,
meaning some ground-truth features were miss-
ing. Similarly, the UA of 90% reveals that 90%
of the features classified as a certain class genu-
inely belonged to that class. The remaining 10%
represent a commission error, where features
were incorrectly assigned to that class. These
metrics highlight the classifications’ effective-
ness in accurately identifying features, while the
Kappa value suggests some room for improve-
ment in distinguishing certain classes.

The accuracy of mapping varied across differ-
ent habitat classes. Seagrass habitat was classified
with high PA and UA accuracy (Table 3). The PA
ranged from 83 to 100%, meaning that between
83 and 100% of the actual seagrass areas on the
ground were correctly identified as seagrass in the
classification. This suggests a relatively low omis-
sion error, with only a small proportion of sea-
grass areas being missed or misclassified. The UA
ranging from 90 to 96% means that between 90

and 96% of the areas classified as seagrass in the
map truly correspond to seagrass on the ground.
This indicates a low commission error, with very
few non-seagrass areas being misclassified as sea-
grass. For the sand habitat classification, the sand
areas were identified correctly most of the time,
although some misclassification occurred, mainly
involving confusion with adjacent habitats such as
sparse vegetation. The PA of 80% indicates that
80% of the actual sand habitat areas on the ground
were correctly identified as sand in the classifica-
tion. There is a 20% omission error, meaning that
20% of actual sand areas were not classified as
sand. The UA of 90% indicates that 90% of the
areas classified as sand in the map were actually
sand on the ground. There is a 10% commission
error, meaning some areas labeled as “sand” were
misclassified and did not actually belong to the
sand habitat. Despite the high PA of rock and
water (100% of each class), only 57% of the areas
mapped as rock and 41% of the areas mapped as
water were correctly identified, as signified by the
UA (Table 3).

Assessment of Dugong Feeding Trail Using
UAVs: Spatial Maps

The availability of seagrass to the dugong varied
across different sites. Among our targeted sam-
pling areas, the average seagrass area in Juhoi,
Dugong Tower, and Saco was 6,880.93 + 77791,
8,239.23 £ 197.50, and 7,652 + 601.02 m?, respec-
tively. The highest density of dugong feeding
trails in Juhoi was observed in H. ovalis patches.
The area of dugong trails at Juhoi was 39.49 to
616.40 m’? (0.61 to 10.38% of the sampling area).
In Dugong Tower, the highest density of dugong
feeding trails was observed in C. rotundata and
T. hemprichii patches. The estimated area of
dugong feeding trails in the area was 55.33 to
160.27 m*(0.70 to 1.77% of the sampling area). In
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Table 3. Overall Accuracy (OA), Producer’s Accuracy (PA), User’s Accuracy (UA), and Kappa Coefficient (K) of the

supervised classification for the targeted sampling areas

% accuracy Seagrass
Deep
Sites K OA | Other Cr Ho Th Hu |Hu+Zc| Sand | Rock | water
PA 95 93 88 - - 70 -- --
Areal| 0.86 99
UA 90 100 83 -- - 84 - -
PA 97 76 - - - 97 - --
Juhoi |Area2| 0.73 89
UA 76 100 - - - 70 -- --
PA 66 83 90 -- -- 97 -- 100
Area3| 0.79 90
UA 100 95 100 -- -- 82 -- 41
PA 92 100 89 -- - 75 100 -
Areal| 0.59 90
UA 92 96 93 - - 100 57 -
PA -- 89 95 -- -- 92 -- --
Dugong | rea | 039 | 96
ower UA -- 91 90 - - 95 - -
PA 100 89 84 - - 89 -- --
Area3| 0.56 96
UA 92 89 95 -- -- 94 -- --
PA - - - 76 100 | 100 - -
Areal| 0.53 86
UA -- -- -- 100 87 67 - -
PA - -- - 78 100 | 100 -- --
Saco |Area2| 0.75 86
UA - -- - 100 100 63 - -
PA -- -- -- 95 99 92 - -
Area3 | 0.73 92
UA - -- - 71 100 62 - -
PA 90 88 89 83 100 90 100 100
Average 0.66 92
UA 90 95 92 90 96 80 57 41

Note: Cr = Cymodocea rotundata, Ho = Halophila ovalis, Th = Thalassia hemprichii, Hu = Halodule uninervis, and Hu +

Zc = Halodule uninervis mixed with Zostera capensis

Saco, the highest density of dugong feeding trails
was observed in H. uninervis dominated patches.
The estimated area of dugong feeding trails in the
area was 49.32 to 300.39 m?(0.49 to 2.95% of the
targeted sampling area) (Figure 6).

The statistical comparison of counts, lengths,
and widths between RGB and NDVI images
indicated no significant differences in counts
across the study sites: Juhoi (p = 0.67), Dugong
Tower (p = 0.50), and Saco (p = 0.11). The
lengths showed significant differences only in
Saco (p = 0.002), while the widths showed sig-
nificant differences in Dugong Tower (p = 0.03)
and highly significant differences in Saco (p <
0.001) (Table 2). From both RGB and NDVI
images, the length of dugong feeding trails

ranged from 10 to 1,337 no./ha'. The counts and
widths ranged from 0.93 to 4.88 m and 0.14 to
0.37 m, respectively. The mean counts, lengths,
and widths of dugong feeding trails derived from
RGB and NDVI images across the three study
sites are presented in Table 2. Notably, the high-
est count of feeding trails was recorded at Juhoi
using the NDVI image (870.67 + 55.18 no./ha),
while the longest and widest trails were observed
at Dugong Tower from the RGB image (3.17 +
1.69 and 0.31 + 0.10 m, respectively).

Temporal Variation in Feeding Activity

at Mook Island

Two seagrass species were found to be dominant
in the dugong feeding area at Mook Island, with
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Figure 6. Example map of the seagrass species and sediment cover presented with dugong feeding trails from Juhoi, Dugong

Tower, and Saco

H. ovalis being a dominant species in the area and
showing high trail intensity and H. pinifolia being
a nondominant species in the area but with many
trails observed in their patches. The dugong feed-
ing trails were distributed unevenly across the site,
with the highest trail densities observed in specific
areas during different survey dates (Figure 7).
Feeding activity was consistently concentrated in
the northwestern areas of the site (Figure 7B &
F-H), suggesting habitual use of these locations
by dugongs—in this case, dominated by H. ovalis.
The highest trail density was observed in March to
April 2021 (Figure 7G & H), corresponding to the
dry season (December to April). Moreover, during
April, dugong feeding trails covered the largest
areas, indicating that feeding activity was more
intense in the dry season. In contrast, trail density
and area were lower during the wet season (May
to November), especially in July and November
2020 (Figure 7B & D). Additionally, trail distribu-
tion patterns suggest a spatial structure in dugong

foraging behavior. Certain months, such as July and
November 2020 and February 2021 (Figure 7B, D
& F), showed localized feeding with high-density
trails in limited areas, while other months, such as
April 2021 (Figure 7H), showed a broader spatial
distribution. This may indicate variations in for-
aging strategies or seagrass regeneration patterns
across different times of the year.

The number and area of feeding trails changed
between the surveyed months at Mook Island. The
highest number of feeding trails were observed in
March 2021 (1,178 trails); while in other months,
the number was much lower—at 11 to 488 trails
(Figure 8A). In the dry season (from February
to April 2021), the total area of dugong feed-
ing trails was the largest (378.89 and 54.80 m?,
respectively); while in the wet season, the area
of the feeding trail was low (13.88 to 45.88 m?)
(Figure 8B). The length and width of feeding trails
also exhibited seasonal changes at Mook Island.
The average length and width of feeding trails
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showed significant changes between the surveyed
months (p < 0.001 for both). The average length
was highest in August 2020, and the lowest aver-
age length was observed in February 2021 (mean
+SD:5.17+1.66 and 1.51 £0.78 m, respectively;
Figure 8C). The average trail width was consis-
tently high in July to August 2020, December
2020, and April 2021 (0.23 to 0.29 m), with the
lowest points in November 2020 and February to
March 2021 (0.14 to 0.16 m) (Figure 8D).

Discussion

UAV imagery can identify dugong feeding
grounds at the scale of a meadow by analyzing
trails within seagrass meadows. NDVI images
(generated using multispectral cameras) exhibit
higher consistency (lower SD) compared to RGB
images to identify and measure dugong feeding
trails, particularly in areas with low seagrass den-
sity (low NDVI values). UAV technology is adapt-
able to diverse geographic conditions, providing
aerial perspectives of intertidal and coastal seagrass
habitats. It facilitates the identification of critical
feeding grounds and supports cross-regional com-
parisons, thereby informing global conservation
strategies. Moreover, UAVs enable time-series data
collection, allowing researchers to monitor changes
in dugong activity, including shifts in habitat use.
These insights are crucial for implementing effec-
tive management measures to protect seagrass
meadows and ensure the long-term sustainability
of this vulnerable marine species.

The Spatial and Temporal Monitoring of the Trails
This study demonstrates the high accuracy (92%
on average) of UAVs in detecting seagrass spe-
cies, seagrass areas, and dugong feeding grounds
at a meadow scale. UAV imagery facilitates the
spatial and temporal analysis of intertidal seagrass
meadows and dugong feeding patterns. Spatial
mapping, as highlighted by Riniatsih et al. (2021),
utilizes UAV data to create detailed maps of sea-
grass distribution and species composition (Duffy
et al., 2018a; Nahirnick et al., 2019; Hamad
et al., 2022). Temporal mapping integrates time-
dependent datasets to visualize changes, such as
seasonal variations in seagrass habitats or patterns
of dugong feeding trails (Roelfsema et al., 2014;
Chayhard et al., 2018; Yamato et al., 2021; Cossa
et al., 2023). Despite increased use of UAVs
for seagrass monitoring (Nahirnick et al., 2019;
James et al., 2020; Roman et al., 2021; Price et al.,
2022; B. Yang et al., 2023; Karang et al., 2024),
there have been limited case studies on monitor-
ing dugong feeding trails and small seagrass spe-
cies like H. ovalis and H. uninervis (Yamato et al.,
2021; Cossa et al., 2023), including this one.

Previous studies suggested that the availability
of seagrass can be used to predict dugong pres-
ence by providing abundant food resources (Tol
et al., 2016; Budiarsa et al., 2021; Heng et al.,
2022). However, the availability alone does not
confirm active foraging, which requires evidence
such as grazing scars or excavations (Preen,
1995). Dugong foraging depends on factors like
seagrass quality (e.g., nutritional content, spe-
cies composition), higher density, and better
accessibility (Sheppard et al., 2007; Marsh et al.,
2011). In some locations, nutritional seagrass spe-
cies (e.g., H. ovalis and H. uninervis), with high
nitrogen and low indigestible fiber, are critical
to dugong diets (Marsh et al., 1999; Sheppard
et al., 2010), though dugongs are known to feed
on all seagrass species (Erftemeijer et al., 1993;
Adulyanukosol et al., 2004; Tol et al., 2016).
However, dugongs may also forage in low-density
meadows with preferred species (Sheppard et al.,
2007; Marsh et al., 2011). Additionally, climatic
factors, such as wind-driven wave generation and
tidal fluctuations, may also affect feeding prefer-
ences (Budiarsa et al.,2021). Thus, while seagrass
availability is an important ecological parameter,
it is not a definitive predictor of dugong foraging
behavior without corroborating evidence (Preen,
1995). However, a comprehensive understand-
ing of dugong feeding preferences and foraging
behavior is still lacking.

The temporal distribution of dugong feeding
trails in Mook Island showed that the number
of trails was low in the monsoon season. In the
tropical region, monsoons strongly influence
the seasons, and the possibility exists that wind
speed, wind direction, and wave action may affect
dugong migration and behavior (De Iongh et al.,
2007; Sheppard et al., 2007). High wave action
during monsoons can affect dugong navigation
ability, which primarily relies on underwater
sound (Burgess & Evans, 2022). Turbulent waves
can disorient dugongs, making it challenging for
them to locate and feed on seagrass beds. This
disturbance may prompt changes in their feeding
behavior or cause them to travel to calmer waters
with more stable seagrass habitats (Budiarsa et al.,
2021). Highlighting these several potential fac-
tors, we propose that our findings are limited to
a local scale.

The measurements of feeding trails (number,
length, and width) have important ecological and
management implications, providing insights into
dugong behavior, habitat use, and the impact of
feeding on ecosystems. A higher number of trails
may indicate a large dugong population and
diverse feeding habits (Tol et al., 2016; Heng
et al., 2022). Longer trails suggest extensive
foraging activity and the availability of a large,
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dispersed food supply (Preen, 1995; De Iongh
et al., 2007). Trail width, roughly the width of a
dugong’s oral disk (Marshall et al., 2003), can
reveal group structure, with most trails at our site
likely made by adult dugongs, whose average trail
width is between 0.17 and 0.30 m (Adulyanukosol
et al., n.d.; Shawky, 2019). However, some trails
exceeding 0.32 m have been observed in this
study, indicating the presence of larger animals.
In contrast, calves may leave trails ranging from
0.09 to 0.143 m wide (Adulyanukosol et al., n.d.;
Tsutsumi et al., 2000).

Resource managers can use feeding trail data
to design conservation areas and prioritize forag-
ing zones (Ayad, 2021; Ng et al., 2022). Mannocci
etal. (2024) recommend including areas with non-
foraging activities, like dugong travel routes, in
protected areas to safeguard seasonal movements.
However, understanding foraging locations and
intensity can guide ecotourism development,
ensuring minimal impact on wildlife habitats
(Ayad, 2021). Additionally, continuous monitor-
ing of feeding trails provides long-term data on
population and behavioral changes, informing
conservation strategies and supporting sustainable
wildlife management in response to environmen-
tal and climate changes.

The Methodologies and the Use of UAV Imagery
for Seagrass and Dugong Feeding Trail Monitoring
Recent advancements in UAV-attached sensors,
such as multispectral cameras, have enabled
improved mapping of intertidal seagrass areas,
becoming widely used to assess seagrass cover
and biomass (James et al., 2020; Roman et al.,
2021). NDVI images are particularly valuable for
identifying vegetation by visualizing vegetation
health and density (Huang et al., 2021). While
lightweight hyperspectral sensors for UAVs have
been developed, their use remains limited due to
complex pre- and post-flight analysis (Addo et al.,
2017).

RGB images provide detailed plant charac-
teristics, while NDVI images assess vegetation
density, with higher values indicating denser
vegetation. NDVI effectively detects spatial and
temporal changes in seagrass ecosystems (Lyons
et al., 2011; Roelfsema et al., 2014; Benmokhtar
etal.,2023) and can be enhanced with color scales
to measure vegetation health more precisely
(Huang et al., 2021). When dugongs consume
seagrass, they create feeding trails by uprooting
plants. In this study, in denser areas (e.g., Juhoi),
both RGB and NDVI effectively detected feed-
ing trails, with RGB identifying distinct trails and
NDVTI highlighting contrasts. In sparse areas (e.g.,
Dugong Tower and Saco), NDVI provided clearer
detection.

However, NDVI is sensitive to environmental
factors like water transparency (C. Yang et al.,
2010; Lu & Cho, 2011; Dierssen et al., 2019),
which can affect its accuracy even at low tide
when seagrass is exposed. Water in tidal pools or
shallow areas can reduce light reflectance, leading
to errors in NDVI values. To improve mapping
accuracy, additional spectral bands and indices
may be needed (Morgan et al., 2021). UAVs’ high
resolution enables detailed vegetation mapping
and change detection, helping differentiate veg-
etation types and assess health (De Cock et al.,
2023; B. Yang et al., 2023). Therefore, when mon-
itoring seagrass and dugong feeding trails with
UAVs, both image resolution and camera sensor
specifications must be considered.

The Advantages and Limitations of the Use of
UAVis for Seagrass and Dugong Feeding Trail
Monitoring

UAVs are well-suited for monitoring dugong
feeding trails and seagrass distribution on a local
scale due to several key advantages. Their ability
to navigate challenging locations allows access
to remote areas, while automation and autono-
mous flight capabilities enhance data collection
efficiency. UAVs are cost-effective compared
to traditional methods, requiring less infrastruc-
ture and manpower; and they cause fewer dis-
turbances to wildlife (Krause et al., 2021). With
high-resolution imaging, UAVs enable detailed
monitoring, such as tracking changes in seagrass
abundance and distribution (Bernard et al., 2007).
Additionally, UAVs can be equipped with various
sensors to collect specific data, supporting appli-
cations like assessing marine ecosystem health
and seagrass responses to stress (Aoki et al., 2022,
2023; B. Yang et al., 2023). Their versatility, cost-
effectiveness, and efficiency make UAVs ideal
for local-scale dugong feeding trail and seagrass
monitoring.

While UAVs offer advantages for monitoring
seagrass and dugongs, their adoption presents
several challenges. Technical limitations, such
as flight endurance, payload capacity, and sensor
resolution, must be considered. Data process-
ing challenges include managing large volumes
of imagery, ensuring data accuracy, and inte-
grating findings for conservation management.
Environmental factors like water levels, turbid-
ity, and sun glint can affect image quality, while
adverse weather conditions, such as rain and
strong winds, can hinder UAV flights and com-
promise data collection (Hodgson et al., 2013;
B. Yang et al., 2023).
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Conclusions

This study demonstrates the use of UAVs to detect
seagrass distribution and dugong feeding grounds
in intertidal seagrass meadows. We also provided
examples of seagrass classification schemes.
Additionally, we combined aerial survey data
with ground surveys to obtain spatial information
on seagrass areas and the distribution of dugong
feeding trails in three geographically diverse loca-
tions: (1) Juhoi and (2) Dugong Tower, Libong
Island, Thailand, and (3) Saco, Inhaca Island,
Mozambique, as well as the temporal distribu-
tion of dugong feeding trails on Mook Island,
Thailand. While UAVs provide valuable data for
monitoring seagrass and dugong feeding areas,
challenges such as restricted flight endurance and
adverse weather conditions can limit their suit-
ability for environmental monitoring in certain
situations.

To address challenges in UAV-based environ-
mental monitoring, advancements in technology,
regulatory frameworks, and operations continue
to expand their application. Combining UAV
technology with dugong feeding trail monitoring
improves our ability to study and protect dugongs
and their seagrass habitats. The integration of
advanced sensors, machine learning, and remote
sensing offers a comprehensive approach to eco-
logical research and conservation. Additionally,
expertise in seagrass and dugong biology, along
with data analysis skills, is crucial for accurately
processing and interpreting the data.

Further research into integrating machine learn-
ing with UAV data can improve the identification of
dugong feeding trails by automating image analysis
and recognizing foraging patterns. Incorporating
bathymetric data, time-series maps, and extensive
UAV surveys can enhance the accuracy of seagrass
dynamics estimations, aiding effective conserva-
tion and management.

Note: The supplemental figures for this article are
available in the “Supplemental Material” section of
the Aquatic Mammals website: https://www.aquatic-
mammalsjournal.org/supplemental-material.
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