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Unmanned aerial vehicles (UAVs) are widely 
used for mapping and monitoring coastal ecosys- Introduction
tems due to their high accuracy and efficiency, 
providing surveys that are less costly and time- Unmanned aerial vehicles (UAVs), also known 
consuming compared to vessel-based methods. as drones, are increasingly being utilized to expe-
This study demonstrates the utility of using UAV dite ground-based observations, significantly 
imagery combined with ground surveys to evalu- reducing time and labor compared to vessel- or 
ate the spatial distribution of dugong (Dugong airplane-based surveys. The prevailing trend in 
dugon) foraging based on their feeding trails and research is to favor multirotors, primarily due 
associated intertidal seagrass beds in (1) Dugong to their straightforward control mechanisms and 
Tower and (2) Juhoi, Libong Island, Thailand, accurate positioning capabilities. Additionally, 
and (3) Saco, Inhaca Island, Mozambique, as the cost-effectiveness of UAV monitoring stands 
well as the temporal distribution of dugong feed- out as a viable option when contrasted with obser-
ing trails on Mook Island, Thailand. Ground vation techniques involving airplanes or heli-
survey results showed that small- and medium- copters (Schofield et al., 2019). Within the field 
sized seagrass species are the most preferred by of aquatic wildlife science, UAVs play various 
dugongs. RGB images capture detailed plant roles, including monitoring the abundance of ani-
characteristics, while NDVI images assess veg- mals (Cleguer et al., 2021), conducting popula-
etation density, with higher values indicating tion assessments (Hodgson et al., 2013), making 
denser vegetation. In denser areas (e.g., Juhoi), individual identifications (Ryan et al., 2022), 
both images detected feeding trails, with RGB evaluating body size and condition (Infantes 
identifying distinct trails and NDVI highlighting et al., 2022; Ramos et al., 2022; Carroll et al., 
contrasts. In sparse areas (e.g., Dugong Tower 2024), and mapping habitat (Cossa et al., 2023). 
and Saco), NDVI provided clearer detection. UAVs are being deployed to elucidate several 
However, UAVs may be limited by restricted aspects of dugong ecology, biology, and behavior 
flight endurance and sea state conditions, as well (Infantes et al., 2020), particularly in estimating 
as by water level, turbidity, and sun glint. This the abundance of dugongs (Raoult et al., 2020). 
study highlights the potential of drones to survey Due to the elusive behavior of dugongs (Dugong 
and monitor dugong populations indirectly, dugon), accurately determining the sizes of indi-
assisting coastal managers in assessing seagrass vidual populations is challenging. 
availability for dugongs and observing dugong Dugong feeding trails are formed when dugongs 
behavior in their natural habitat, particularly in graze up seagrasses, including their roots, leaving a 
hotspot areas. shallow, meandering track of about equal width and 
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depth (Preen, 1995). The feeding trails can be used et al. (2021) used deep neural networks-based 
as an indicator of their feeding ground utilization automated extraction to detect changes in position 
(Marsh et al., 2011). The recovery of seagrass fol- from UAV images and to identify dugong feed-
lowing disturbances caused by dugong herbivory ing trails in intertidal seagrass beds. Meanwhile, 
was estimated to be relatively rapid for Halophila Cossa et al. (2023) employed UAVs and machine-
ovalis, occurring in less than 20 d (Nakaoka & learning techniques to monitor dugong feeding 
Aioi, 1999). In contrast, other seagrass species, grounds and evaluate the influence of gillnet 
such as Cymodocea spp. and Thalassia spp., may fishing activities on these areas. Therefore, some 
take longer to recover due to their slower growth researchers have monitored and mapped seagrass 
rates and differences in resilience (Kilminster et al., and dugong feeding trail distributions in intertidal 
2015). Recovery times can also be influenced by zones, providing important information for the 
environmental factors, including water quality, conservation and management of seagrass habi-
sediment stability, and grazing intensity. However, tats in coastal zones.
tracking dugong feeding trails is a method that indi- In this study, we present a cost-effective aerial 
rectly monitors their presence and feeding activity, survey approach for identifying dugong feed-
which could contribute to conservation and man- ing grounds in intertidal seagrass meadows. We 
agement. Moreover, these trails can be geolocated also provide examples of seagrass classification 
and mapped out for pattern analysis. schemes. Additionally, we combine this aerial 

Monitoring the distribution of dugong feed- survey information with ground surveys to obtain 
ing trails in intertidal seagrass areas has been estimates of meadow area and the distribution of 
proven to be an effective approach for observing dugong feeding trails in Libong Island and Mook 
detailed dugong feeding behavior. As dugongs Island in southern Thailand, as well as in Inhaca 
uproot entire plants, the leaves, rhizomes, and Island in southern Mozambique.
roots of seagrasses become exposed along the 
edges of their feeding trails (Marsh et al., 2011). Methods
These trails serve as direct evidence of feeding 
activity and provide crucial data on feeding loca- Study Site and Data Acquisition
tion, seagrass consumption, and feeding direction Our study involves a spatial assessment con-
(Budiarsa et al., 2021). In traditional techniques, ducted across three distinct areas: (1) Dugong 
researchers target areas within seagrass mead- Tower and (2) Juhoi in Libong Island, Trang, 
ows—a unified ecological habitat characterized Thailand (Figure 1A), and (3) Saco, Inhaca Island, 
by continuous or semi-continuous seagrass, often Mozambique (Figure 1B). We also conducted 
comprising one or more species—along transects a temporal assessment within one area in Mook 
to gather information on seagrass. For instance, Island, Trang Province, Thailand (Figure 1A).
the species and percent coverage of grazed sea- For the spatial assessment of dugong feeding 
grass are determined by assessing the seagrass trails study, the imagery was obtained from three 
composition along the observed dugong feeding study sites: (1) Dugong Tower and (2) Juhoi in 
trails and measuring the width and length of the Libong Island, Trang, Thailand, during a compre-
trails (Preen, 1995; Yamamuro & Chirapart, 2005; hensive survey of dugong reproductive behav-
Budiarsa et al., 2021). However, these methods ior conducted around the island in February 
consume a lot of manpower and time, cover- 2019 and February 2020 (Infantes et al., 2020; 
ing only a small area of the intertidal seagrass Figure 1A; Table 1), and (3) Saco, Inhaca 
meadow due to time and tide constraints (Murfitt Island, Mozambique, as reported by Cossa et al. 
et al., 2017). (2023; Figure 1B; Table 1). The percent sea-

In recent years, there has been a rise in the uti- grass coverage in Libong Island ranged from 
lization of UAVs as an affordable and effective 20 to 40%, with six identified species: Enhalus 
monitoring solution in various contexts. The use acoroides, Cymodocea rotundata, Halophila 
of UAVs has demonstrated their utility in assessing ovalis, Halodule pinifolia, Halodule uninervis, 
the presence or absence of seagrass cover (Duffy and Thalassia hemprichii. Seagrass meadows 
et al., 2018b; Price et al., 2022) and in differentiat- at Inhaca Island cover approximately 50% of 
ing seagrass species (Hamad et al., 2022; Tahara the intertidal areas around the island with nine 
et al., 2022; Karang et al., 2024). Additionally, identified species: C. rotundata, Oceana serru-
some studies have attempted to discriminate sea- lata (formerly C. serrulata), H. ovalis, H. uni-
grass species from seaweed (Román et al., 2021), nervis, T. hemprichii, Thalassodendron cilia-
coral, and unvegetated areas such as rock and bare tum, Thalassodendron leptocule, Syringodium 
sediment (Nababan et al., 2021; Riniatsih et al., isoetifolium, and Zostera capensis (Bandeira & 
2021). Nevertheless, there are few methods using Gullström, 2014). The aerial surveys for these 
UAVs to observe dugong feeding trails. Yamato studies were conducted at an altitude of 80 m in 
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Figure 1. Map of the study sites (shown as stars) in (A) Mook Island and Libong Island (including the two sites: Dugong 
Tower and Juhoi), Trang Province, Southern Thailand, and (B) Saco, Inhaca Island, Maputo Province, Southern Mozambique 

Table 1. Drone flight information

Image  
used Sites

Date 
(d/mo/y) Seasons

Area cover 
(km2)

Camera  
model

Resolution 
(cm pixel–1)

No. of
images

Flight time 
(min)

Sp
at

ia
l a

ss
es

sm
en

t Dugong 
Tower

24/2/2020
Dry

0.10 RGB 2.18 194 18

24/2/2020 0.14 Multispectral 5.56 274 15

Juhoi
26/2/2020

Dry
0.16 RGB 2.18 229 15

26/2/2020 0.35 Multispectral 5.56 688 42

Saco
19/11/2018

Wet
0.15 RGB 2.18 298 18

19/11/2018 0.10 Multispectral 5.56 199 11

Te
m

po
ra

l a
ss

es
sm

en
t

Mook
Island

2/7/2020

Wet

0.24

RGB

2.18 454 31

18/8/2020 0.44 2.18 837 62

13/11/2020 0.24 2.18 453 26

16/12/2020

Dry

0.20 2.18 380 23

12/2/2021 0.14 2.18 275 17

14/3/2021 0.29 2.18 558 35

10/4/2021 0.20 2.18 366 22
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the intertidal zone during the lowest tide of each 
study site (Table 1). The UAV was flown in regu-
lar transects in pre-programmed flights using pix-
4DCapture or DroneDeploy® software, a survey 
planning software for drone mapping, covering 
the entire area. The front and side image overlaps 
were set to 80 and 60%, respectively. The vis-
ible (RGB) imagery was obtained using a quad-
copter drone (Phantom 4 Pro, Version 2.0; DJI, 
Nanshan, Shenzhen, China) with RGB camera 
models, and the multispectral imagery was con-
ducted using a multispectral camera (Micasense; 
Red Edge, Arlington, VA, USA) on a quadcop-
ter drone (Matrice 200, DJI) (Table 1). Ground-
truth observations were conducted concurrently 
with the aerial surveys to collect spatially refer-
enced data on seagrass meadows using a modi-
fied spot-check methodology (McKenzie, 2006). 
A total of 30 to 50 observations were recorded, 
including geographic coordinates (latitude and 
longitude), seagrass species, and percentage 
cover. Geographic coordinates were recorded as 
waypoints utilizing Garmin GPSMap eTrex 30 
devices, achieving positional accuracy of ±5 m. 
Seagrass species and cover percentage were 
assessed within 50 × 50 cm quadrats. These 
ground-truth observations were later compared 
with the UAV orthomosaic through manual 
visual interpretation (Trinh et al., 2023). The 
field data provided foundational training data for 
the UAV orthomosaic classification.

To examine the temporal assessment of 
dugong feeding trails, ground-truth data and 
imagery were obtained from July 2020 to April 
2021 at Mook Island, Trang Province, Thailand 
(Figure 1A; Table 1). The percentage cover of 
seagrass in the area ranged from 17 to 34%, with 
six identified species identified: E. acoroides, 
C. rotundata, H. ovalis, H. pinifolia, H. uniner-
vis, and T. hemprichii. UAV flights were per-
formed, covering approximately 0.39 km² in the 
northeast intertidal seagrass meadows of Mook 
Island during low tide (Table 1). To ensure con-
sistency, the flights were conducted using the 
same method as the RGB imagery for the spatial 
assessment. The ground-truth observations were 
conducted during the spring tide period when 
the intertidal seagrass beds were exposed to air. 
Five hundred 50 × 50 cm quadrats were placed 
in 15 m intervals from each other in the study 
area, covering a total area of around 0.115 km2. 
The ground positioning of each quadrat was 
marked using waypoints on a handheld Garmin 
GPSMap eTrex 30 placed at the center of each 
quadrant. Subsequently, the species and percent-
age cover of seagrass within the quadrats were 
recorded following standard Seagrass-Watch 
protocols (McKenzie, 2006). 

Image Processing and Identification of  
Dugong Feeding Trails 
All the images were processed using the Agisoft 
PhotoScan (Agisoft LLC, St. Petersburg, Russia) 
to generate orthomosaics (aerial maps) of the 
study areas. RGB color orthomosaics were gen-
erated from red (R), green (G), and blue (B) 
bands. The multispectral orthomosaics were built 
for each of the five bands (R, G, B, near-infra-
red [NIR], and Red Edge). The process included 
alignment, optimization, Digital Elevation Model 
(DEM), and orthomosaic building, and then sepa-
rating orthomosaics per band by using the raster 
calculator. Normalized Difference Vegetation 
Index (NDVI) maps were generated from R and 
NIR bands. NDVI is specifically designed to 
highlight variations in vegetation health. It cal-
culates the difference between NIR and R reflec-
tance, emphasizing the presence and condition 
of vegetation (Chen et  al., 2021; Huang et  al., 
2021). The NDVI formula can be expressed as 
follows (Li et al., 2023):

	 (1)

NDVI varies between -1 to +1. The higher 
values suggest healthy vegetation (NIR > R, a 
value close to +1), lower values indicate bare soil 
or stressed vegetation (R > NIR, a value close to 
-1), and values near 0 represent neutral or mixed 
areas (NIR ≈ R) (Figure S1; the supplemental fig-
ures for this article are available on the Aquatic 
Mammals website). 

The comparison between RGB and NDVI high-
lights two key insights: (1) differences in vegeta-
tion characteristics and density, and (2) feeding 
trail detection. RGB images provide detailed 
information on plant characteristics, such as color 
variations that may indicate species, while NDVI 
images are better suited for assessing vegetative 
density.

Dugong feeding trails can be identified gener-
ally as sinuous paths of clear substrate through 
patches of seagrass. Their width is recognizable 
as being between 9 to 30 cm (Adulyanukosol 
et al., n.d.; Shawky, 2019; Tsutsumi et al., 2000). 
The dugong feeding trails were quite different 
from other features found in seagrass such as 
boat propeller scars or boring by other animals 
(Figure S2). In this study, only dugong feeding 
trails that clearly occurred within seagrass mead-
ows were used in the analysis.

The spatial assessment of dugong feeding trails 
was conducted on orthomosaics at three loca-
tions—(1) Dugong Tower and (2) Juhoi in Libong 
Island, Trang, Thailand, and (3) Saco, Inhaca 
Island, Mozambique—using QGIS, Version 3.28.3 
(QGIS Development Team, 2023), for both RGB 
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Figure 2. The identification of dugong (Dugong dugon) feeding trails for spatial assessment: (A) example of the three 
targeted sampling areas (1 ha), numbered 1 to 3; (B) zooming to the targeted sampling area 1, with 10 × 10 m grid template 
and template applied to mosaic ready for assessment (blue square indicates the cell shown in C and D); (C) zooming to one 
10 × 10 m cell; (D) manually drawing lines along the dugong feeding trails (line layer); (E) the trail abundance in sampling 
area 1; and (F) example of the length and width measurement.

and NDVI maps. Three targeted sampling areas function and the ‘$length’ expression in the Field 
(10,000 m2, 1 ha) were randomly created in the Calculator; the average width of the feeding trails 
hotspot of the dugong feeding trail in each site; (W : The average width at each targeted sampling 
these excluded obvious vegetated land areas and area 

i

i) was manually measured on the images 
deep water (Figure 2A). A fixed grid template with three times for each of the 30 randomly selected 
10 × 10 m cells was created to overlay on the tar- trails (Figure 2F) by using the program measure 
geted sampling area (Figure 2B). Each individual tools; and the area of the feeding trails was cal-
grid cell (10 × 10 m; Figure 2C) was assessed by culated from the line layer using the ‘Geometry’ 
the Seaweed and Seagrass Research Unit (SSRU) function and the ‘$length * W ’ expression in the 
staff with experience in locating dugong feeding Field Calculator.

i

trails in the field. For the assessment, SSRU staff The temporal assessment of dugong feeding 
manually drew a line following the trails shown trails was conducted on RGB orthomosaics from 
on an LCD computer monitor at a scale of 1:300 Mook Island, Trang Province, Thailand, using 
or less (Figure 2D), and then repeated the process QGIS, Version 3.28.3 (QGIS Development Team, 
of drawing a line in every grid cell. The line layers 2023). A fixed grid template with 100 × 100 m 
representing the dugong feeding trails in the sam- cells was created to overlay on the sampling area 
pling area (Figure 2E) were used to estimate the (Figure 3A). Each individual grid cell (100 × 
length, average width, and area. 100 m) was assessed by SSRU staff with experi-

The length (m), average width (m), and area ence in locating dugong feeding trails in the field. 
(m²) of dugong feeding trails in each targeted For the assessment, SSRU manually drew a line 
sampling area were estimated using the QGIS, following the trails shown on an LCD computer 
Version 3.28.3 (QGIS Development Team, monitor at a scale of 1:300 or less (Figure 3B & C), 
2023). The length of the feeding trails was cal- and again repeated the process of drawing a line in 
culated from the line layer using the ‘Geometry’ every grid cell. The line layer representing dugong 
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Figure 3. The identification of dugong feeding trails for temporal assessment involves the following steps: (A) an example 
of an RGB orthomosaic, a 100 × 100 m grid template, and the template applied to the mosaic, prepared for assessment (the 
blue square indicates the cell shown in B), (B) zooming into a 100 × 100 m grid cell, (C) further zooming into a 10 × 10 m 
grid cell and manually drawing lines along the dugong feeding trails (line layer), (D) creating points from the line layer and 
using the average trail width to set a point buffer, (E) zooming into a 1 × 1 m grid cell to show the points (black circles) and 
buffers (pink squares), and (F) joining the data from step D with the 100 × 100 m grid template, then displaying the quantities 
using color to represent values (count of points in each 100 × 100 m grid cell) with class interval.

feeding trails was used to create points utilizing the 
average trail width to set a point buffer (Figure 3D 
& E) and then joining the point data with the 100 × 
100 m grid template and displaying the quantities 
using color to represent values (count of points in 
each 100 × 100 m grid cell) with class interval. The 
formula for class interval that was used to catego-
rize the frequency of the trail can be expressed as 
follows:

	 (2)

where Max is the maximum value of the point 
count, Min is the minimum value of the point 
count, and Class is the number of categories of 
dugong feeding trail frequency. In this study, 
we divided the trail frequency into five classes: 

(1) very low, (2) low, (3) medium, (4) high, and 
(5) very high (Figure 3F).

Statistical analyses were performed using 
R, Version 4.4.0 for Windows (R Core Team, 
2024). Data normality was assessed via the 
Shapiro–Wilk test (α = 0.05), and homoscedas-
ticity was assessed with Levene’s test. Dugong 
feeding trail data, including the length, width, 
and area of the trails, were estimated following 
spatial assessment protocols. Length was log10 
transformed for normality and variance homo-
geneity. Differences in trail width and length 
between months were compared using a one-way 
ANOVA, followed by Tukey’s HSD test (α = 
0.05) for post hoc comparisons when significant 
variances were detected.
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Processing of Seagrass Classification Maps
The seagrass classification was conducted on ortho-
mosaics using RGB maps for the same three targeted 
sampling areas used in the spatial assessment study 
at three locations as explained: (1) Dugong Tower 
and (2) Juhoi on Libong Island, Trang, Thailand, 
and (3) Saco on Inhaca Island, Mozambique. The 
steps to create the seagrass distribution maps used 
to determine the area of seagrass and dugong trail 
distribution maps are depicted in Figure 4.

The seagrass boundaries were established in 
these targeted sampling areas by generating a 
spatial distribution map. The distribution of the 
seagrass was done using Maximum Likelihood 
Classification (MLC) with open-source software: 
‘SCP Plugin’ for QGIS, Version 3.28.3 (QGIS 
Development Team, 2023). At each targeted sam-
pling area, the collected ground data points were 
randomly divided into two groups of data points 
for the purpose of image classification training 
(70%) and validation of the classified images 
(30%). The image classification was done at the 

seagrass species level. Based on our targeted sam-
pling area, five seagrass species were identified 
(H. ovalis, C. rotundata, T. hemprichii, H. uni-
nervis, and H. uninervis mixed with Z. capensis); 
these were used as different classes together with 
three classes for barren substrate (rock, sand, and 
deep water). Since there was variability in the 
seagrass species composition, the number of sea-
grass classes varied from 2 to 3 in Thailand and 
2 in Mozambique. Using both the resulting clas-
sification and reference data (validation data), an 
error matrix was constructed to calculate Overall 
Accuracy (OA), Producer’s Accuracy (PA), 
User’s Accuracy (UA), and the Kappa Coefficient 
(K), following the method described by Lillesand 
et al. (2015). OA indicates the general effective-
ness of the classification process. The formula can 
be expressed as follows:

	 (3)

Figure 4. The processing for seagrass and dugong trail distribution maps
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PA represents the likelihood that a certain land 
cover type on the ground-truth data (reference 
sample) is correctly classified in the map (omis-
sion error). The formula can be expressed as 
follows:

	 (4)

UA refers to the probability that a class in the 
map accurately represents what is on the ground 
(commission error). The formula can be expressed 
as follows:

	 (5)

K reflects the proportionate reduction in error 
achieved by the classification process compared 
to random classification. The K formula can be 
expressed as follows:

	 (6)

where Po represents observed agreement and 
is equivalent to OA but expressed as a decimal 
rather than a percentage (e.g., if OA is 85%, then 
Po = 0.85), and Pe represents expected agree-
ment, calculated based on the distribution of 
samples across classes. K values range from -1 to 
+1. Higher values (K > 0.8) indicate strong agree-
ment, moderate values (K = 0.4 to 0.8) reflect 
moderate agreement, and lower values (K < 0.4) 
suggest weak agreement.

Results

Comparison of RGB and NDVI Images
When detecting feeding trails, feeding trails were 
easy to detect in both RGB and NDVI images 
in denser vegetation patches (e.g., Juhoi). RGB 
effectively identified distinct trails, while NDVI 
highlighted the contrast between vegetated and 
non-vegetated areas (Figure 5). Additionally, there 
were no significant differences in trail measure-
ments (count, length, or width) between RGB and 
NDVI images for Juhoi as shown in Table 2. In 
sparse areas (e.g., Dugong Tower and Saco), RGB 
images struggled due to visual complexity, while 
NDVI provided clearer detection by highlighting 

Figure 5. The variability of dugong feeding trails in RGB and NDVI images in different seagrass density levels. Note the 
same images are compared between the RGB and NDVI columns in each row.
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Table 2. The mean, standard deviation (SD), and significance level (p value) of the comparisons in counts, lengths, and 
widths of dugong (Dugong dugon) feeding trails across RGB and NDVI images of each study site

Site

Count  
(no./ha)

Length  
(m)

Width  
(m)

RGB NDVI p value RGB NDVI p value RGB NDVI p value

Juhoi 721.33 ± 
568.72

870.67 ± 
55.18 0.67ns 2.42 ± 1.50 1.94 ± 1.48 0.10ns 0.24 ± 0.06 0.25 ± 0.05 0.66ns

Dugong 
Tower

104.67 ± 
87.07

69.67 ± 
69.64 0.50ns 3.17 ± 1.69 2.15 ± 1.03 0.32ns 0.31 ± 0.10 0.32 ± 0.10 0.03*

Saco 935.67 ± 
596.78

197.33 ± 
150.19 0.11ns 1.08 ± 0.61 2.39 ± 1.23 0.002** 0.15 ± 0.03 0.24 ± 0.05 0.0006***

Note: ns = nonsignificant differences, * = significant differences at p < 0.05, ** = significant differences at p < 0.01, and 
*** = significant differences at p < 0.001

vegetative contrasts (Figure 5). However, likely and 96% of the areas classified as seagrass in the 
due to the difficulty in determining the trail map truly correspond to seagrass on the ground. 
boundary, significant differences in trail widths This indicates a low commission error, with very 
between RGB and NDVI images were observed few non-seagrass areas being misclassified as sea-
for Dugong Tower and Saco as shown in Table 2. grass. For the sand habitat classification, the sand 

areas were identified correctly most of the time, 
UAV-Based Classification of Seagrass Orthophotos although some misclassification occurred, mainly 
The classification results provide a comprehen- involving confusion with adjacent habitats such as 
sive evaluation of performance through several sparse vegetation. The PA of 80% indicates that 
key metrics (Table 3). The classification achieved 80% of the actual sand habitat areas on the ground 
the Kappa Coefficient of 0.66, indicating moder- were correctly identified as sand in the classifica-
ate agreement between the classified data and tion. There is a 20% omission error, meaning that 
ground-truth data. The OA of 92% represents a 20% of actual sand areas were not classified as 
high proportion of correctly classified features. sand. The UA of 90% indicates that 90% of the 
This high OA demonstrates the robustness of areas classified as sand in the map were actually 
the classification method and suggests it is reli- sand on the ground. There is a 10% commission 
able for general analysis and mapping purposes. error, meaning some areas labeled as “sand” were 
The PA of 90% indicates that 90% of the actual misclassified and did not actually belong to the 
features on the ground were correctly identified sand habitat. Despite the high PA of rock and 
in the classification, with a 10% omission error, water (100% of each class), only 57% of the areas 
meaning some ground-truth features were miss- mapped as rock and 41% of the areas mapped as 
ing. Similarly, the UA of 90% reveals that 90% water were correctly identified, as signified by the 
of the features classified as a certain class genu- UA (Table 3). 
inely belonged to that class. The remaining 10% 
represent a commission error, where features Assessment of Dugong Feeding Trail Using 
were incorrectly assigned to that class. These UAVs: Spatial Maps
metrics highlight the classifications’ effective- The availability of seagrass to the dugong varied 
ness in accurately identifying features, while the across different sites. Among our targeted sam-
Kappa value suggests some room for improve- pling areas, the average seagrass area in Juhoi, 
ment in distinguishing certain classes. Dugong Tower, and Saco was 6,880.93 ± 777.91, 

The accuracy of mapping varied across differ- 8,239.23 ± 197.50, and 7,652 ± 601.02 m2, respec-
ent habitat classes. Seagrass habitat was classified tively. The highest density of dugong feeding 
with high PA and UA accuracy (Table 3). The PA trails in Juhoi was observed in H. ovalis patches. 
ranged from 83 to 100%, meaning that between The area of dugong trails at Juhoi was 39.49 to 
83 and 100% of the actual seagrass areas on the 616.40 m2 (0.61 to 10.38% of the sampling area). 
ground were correctly identified as seagrass in the In Dugong Tower, the highest density of dugong 
classification. This suggests a relatively low omis- feeding trails was observed in C. rotundata and 
sion error, with only a small proportion of sea- T. hemprichii patches. The estimated area of 
grass areas being missed or misclassified. The UA dugong feeding trails in the area was 55.33 to 
ranging from 90 to 96% means that between 90 160.27 m2 (0.70 to 1.77% of the sampling area). In 
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Table 3. Overall Accuracy (OA), Producer’s Accuracy (PA), User’s Accuracy (UA), and Kappa Coefficient (K) of the 
supervised classification for the targeted sampling areas 

Sites K

% accuracy Seagrass

Sand Rock
Deep 
waterOA Other Cr Ho Th Hu Hu + Zc

Juhoi

Area 1 0.86 99
PA 95 93 88 -- -- 70 -- --

UA 90 100 83 -- -- 84 -- --

Area 2 0.73 89
PA 97 76 -- -- -- 97 -- --

UA 76 100 -- -- -- 70 -- --

Area 3 0.79 90
PA 66 83 90 -- -- 97 -- 100

UA 100 95 100 -- -- 82 -- 41

Dugong 
Tower

Area 1 0.59 90
PA 92 100 89 -- -- 75 100 --

UA 92 96 93 -- -- 100 57 --

Area 2 0.39 96
PA -- 89 95 -- -- 92 -- --

UA -- 91 90 -- -- 95 -- --

Area 3 0.56 96
PA 100 89 84 -- -- 89 -- --

UA 92 89 95 -- -- 94 -- --

Saco

Area 1 0.53 86
PA -- -- -- 76 100 100 -- --

UA -- -- -- 100 87 67 -- --

Area 2 0.75 86
PA -- -- -- 78 100 100 -- --

UA -- -- -- 100 100 63 -- --

Area 3 0.73 92
PA -- -- -- 95 99 92 -- --

UA -- -- -- 71 100 62 -- --

Average 0.66 92
PA 90 88 89 83 100 90 100 100

UA 90 95 92 90 96 80 57 41

Note: Cr = Cymodocea rotundata, Ho = Halophila ovalis, Th = Thalassia hemprichii, Hu = Halodule uninervis, and Hu + 
Zc = Halodule uninervis mixed with Zostera capensis

Saco, the highest density of dugong feeding trails ranged from 10 to 1,337 no./ha-1. The counts and 
was observed in H. uninervis dominated patches. widths ranged from 0.93 to 4.88 m and 0.14 to 
The estimated area of dugong feeding trails in the 0.37 m, respectively. The mean counts, lengths, 
area was 49.32 to 300.39 m2 (0.49 to 2.95% of the and widths of dugong feeding trails derived from 
targeted sampling area) (Figure 6). RGB and NDVI images across the three study 

The statistical comparison of counts, lengths, sites are presented in Table 2. Notably, the high-
and widths between RGB and NDVI images est count of feeding trails was recorded at Juhoi 
indicated no significant differences in counts using the NDVI image (870.67 ± 55.18 no./ha), 
across the study sites: Juhoi (p = 0.67), Dugong while the longest and widest trails were observed 
Tower (p = 0.50), and Saco (p = 0.11). The at Dugong Tower from the RGB image (3.17 ± 
lengths showed significant differences only in 1.69 and 0.31 ± 0.10 m, respectively).
Saco (p = 0.002), while the widths showed sig-
nificant differences in Dugong Tower (p = 0.03) Temporal Variation in Feeding Activity  
and highly significant differences in Saco (p < at Mook Island
0.001) (Table 2). From both RGB and NDVI Two seagrass species were found to be dominant 
images, the length of dugong feeding trails in the dugong feeding area at Mook Island, with 
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Figure 6. Example map of the seagrass species and sediment cover presented with dugong feeding trails from Juhoi, Dugong 
Tower, and Saco

H. ovalis being a dominant species in the area and foraging behavior. Certain months, such as July and 
showing high trail intensity and H. pinifolia being November 2020 and February 2021 (Figure 7B, D 
a nondominant species in the area but with many & F), showed localized feeding with high-density 
trails observed in their patches. The dugong feed- trails in limited areas, while other months, such as 
ing trails were distributed unevenly across the site, April 2021 (Figure 7H), showed a broader spatial 
with the highest trail densities observed in specific distribution. This may indicate variations in for-
areas during different survey dates (Figure 7). aging strategies or seagrass regeneration patterns 
Feeding activity was consistently concentrated in across different times of the year.
the northwestern areas of the site (Figure 7B & The number and area of feeding trails changed 
F-H), suggesting habitual use of these locations between the surveyed months at Mook Island. The 
by dugongs—in this case, dominated by H. ovalis. highest number of feeding trails were observed in 
The highest trail density was observed in March to March 2021 (1,178 trails); while in other months, 
April 2021 (Figure 7G & H), corresponding to the the number was much lower—at 11 to 488 trails 
dry season (December to April). Moreover, during (Figure 8A). In the dry season (from February 
April, dugong feeding trails covered the largest to April 2021), the total area of dugong feed-
areas, indicating that feeding activity was more ing trails was the largest (378.89 and 54.80 m2, 
intense in the dry season. In contrast, trail density respectively); while in the wet season, the area 
and area were lower during the wet season (May of the feeding trail was low (13.88 to 45.88 m²) 
to November), especially in July and November (Figure 8B). The length and width of feeding trails 
2020 (Figure 7B & D). Additionally, trail distribu- also exhibited seasonal changes at Mook Island. 
tion patterns suggest a spatial structure in dugong The average length and width of feeding trails 
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Figure 7. The distribution and density of dugong feeding trails (only dugong feeding trails that clearly occurred within 
seagrass meadows) at Mook Island on seven dates between July 2020 and April 2021

Figure 8. The summary of results of the dugong feeding trail analysis in the study site area at Mook Island during surveyed 
months: (A) total number of feeding trails, (B) total area covered by feeding trails (m2), (C) average length of the feeding 
trails (m), and (D) average width of the feeding trails (m). Values with the same letter (lowercase letter in C and D) do not 
differ significantly between the months (p < 0.05; Tukey’s HSD).
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showed significant changes between the surveyed Previous studies suggested that the availability 
months (p < 0.001 for both). The average length of seagrass can be used to predict dugong pres-
was highest in August 2020, and the lowest aver- ence by providing abundant food resources (Tol 
age length was observed in February 2021 (mean et al., 2016; Budiarsa et al., 2021; Heng et al., 
± SD: 5.17 ± 1.66 and 1.51 ± 0.78 m, respectively; 2022). However, the availability alone does not 
Figure 8C). The average trail width was consis- confirm active foraging, which requires evidence 
tently high in July to August 2020, December such as grazing scars or excavations (Preen, 
2020, and April 2021 (0.23 to 0.29 m), with the 1995). Dugong foraging depends on factors like 
lowest points in November 2020 and February to seagrass quality (e.g., nutritional content, spe-
March 2021 (0.14 to 0.16 m) (Figure 8D). cies composition), higher density, and better 

accessibility (Sheppard et al., 2007; Marsh et al., 
Discussion 2011). In some locations, nutritional seagrass spe-

cies (e.g., H. ovalis and H. uninervis), with high 
UAV imagery can identify dugong feeding nitrogen and low indigestible fiber, are critical 
grounds at the scale of a meadow by analyzing to dugong diets (Marsh et al., 1999; Sheppard 
trails within seagrass meadows. NDVI images et al., 2010), though dugongs are known to feed 
(generated using multispectral cameras) exhibit on all seagrass species (Erftemeijer et al., 1993; 
higher consistency (lower SD) compared to RGB Adulyanukosol et al., 2004; Tol et al., 2016). 
images to identify and measure dugong feeding However, dugongs may also forage in low-density 
trails, particularly in areas with low seagrass den- meadows with preferred species (Sheppard et al., 
sity (low NDVI values). UAV technology is adapt- 2007; Marsh et al., 2011). Additionally, climatic 
able to diverse geographic conditions, providing factors, such as wind-driven wave generation and 
aerial perspectives of intertidal and coastal seagrass tidal fluctuations, may also affect feeding prefer-
habitats. It facilitates the identification of critical ences (Budiarsa et al., 2021). Thus, while seagrass 
feeding grounds and supports cross-regional com- availability is an important ecological parameter, 
parisons, thereby informing global conservation it is not a definitive predictor of dugong foraging 
strategies. Moreover, UAVs enable time-series data behavior without corroborating evidence (Preen, 
collection, allowing researchers to monitor changes 1995). However, a comprehensive understand-
in dugong activity, including shifts in habitat use. ing of dugong feeding preferences and foraging 
These insights are crucial for implementing effec- behavior is still lacking.
tive management measures to protect seagrass The temporal distribution of dugong feeding 
meadows and ensure the long-term sustainability trails in Mook Island showed that the number 
of this vulnerable marine species. of trails was low in the monsoon season. In the 

tropical region, monsoons strongly influence 
The Spatial and Temporal Monitoring of the Trails the seasons, and the possibility exists that wind 
This study demonstrates the high accuracy (92% speed, wind direction, and wave action may affect 
on average) of UAVs in detecting seagrass spe- dugong migration and behavior (De Iongh et al., 
cies, seagrass areas, and dugong feeding grounds 2007; Sheppard et al., 2007). High wave action 
at a meadow scale. UAV imagery facilitates the during monsoons can affect dugong navigation 
spatial and temporal analysis of intertidal seagrass ability, which primarily relies on underwater 
meadows and dugong feeding patterns. Spatial sound (Burgess & Evans, 2022). Turbulent waves 
mapping, as highlighted by Riniatsih et al. (2021), can disorient dugongs, making it challenging for 
utilizes UAV data to create detailed maps of sea- them to locate and feed on seagrass beds. This 
grass distribution and species composition (Duffy disturbance may prompt changes in their feeding 
et al., 2018a; Nahirnick et al., 2019; Hamad behavior or cause them to travel to calmer waters 
et al., 2022). Temporal mapping integrates time- with more stable seagrass habitats (Budiarsa et al., 
dependent datasets to visualize changes, such as 2021). Highlighting these several potential fac-
seasonal variations in seagrass habitats or patterns tors, we propose that our findings are limited to 
of dugong feeding trails (Roelfsema et al., 2014; a local scale.
Chayhard et al., 2018; Yamato et al., 2021; Cossa The measurements of feeding trails (number, 
et al., 2023). Despite increased use of UAVs length, and width) have important ecological and 
for seagrass monitoring (Nahirnick et al., 2019; management implications, providing insights into 
James et al., 2020; Román et al., 2021; Price et al., dugong behavior, habitat use, and the impact of 
2022; B. Yang et al., 2023; Karang et al., 2024), feeding on ecosystems. A higher number of trails 
there have been limited case studies on monitor- may indicate a large dugong population and 
ing dugong feeding trails and small seagrass spe- diverse feeding habits (Tol et al., 2016; Heng 
cies like H. ovalis and H. uninervis (Yamato et al., et al., 2022). Longer trails suggest extensive 
2021; Cossa et al., 2023), including this one. foraging activity and the availability of a large, 
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dispersed food supply (Preen, 1995; De Iongh However, NDVI is sensitive to environmental 
et al., 2007). Trail width, roughly the width of a factors like water transparency (C. Yang et al., 
dugong’s oral disk (Marshall et al., 2003), can 2010; Lu & Cho, 2011; Dierssen et al., 2019), 
reveal group structure, with most trails at our site which can affect its accuracy even at low tide 
likely made by adult dugongs, whose average trail when seagrass is exposed. Water in tidal pools or 
width is between 0.17 and 0.30 m (Adulyanukosol shallow areas can reduce light reflectance, leading 
et al., n.d.; Shawky, 2019). However, some trails to errors in NDVI values. To improve mapping 
exceeding 0.32 m have been observed in this accuracy, additional spectral bands and indices 
study, indicating the presence of larger animals. may be needed (Morgan et al., 2021). UAVs’ high 
In contrast, calves may leave trails ranging from resolution enables detailed vegetation mapping 
0.09 to 0.143 m wide (Adulyanukosol et al., n.d.; and change detection, helping differentiate veg-
Tsutsumi et al., 2000). etation types and assess health (De Cock et al., 

Resource managers can use feeding trail data 2023; B. Yang et al., 2023). Therefore, when mon-
to design conservation areas and prioritize forag- itoring seagrass and dugong feeding trails with 
ing zones (Ayad, 2021; Ng et al., 2022). Mannocci UAVs, both image resolution and camera sensor 
et al. (2024) recommend including areas with non- specifications must be considered.
foraging activities, like dugong travel routes, in 
protected areas to safeguard seasonal movements. The Advantages and Limitations of the Use of 
However, understanding foraging locations and UAVs for Seagrass and Dugong Feeding Trail 
intensity can guide ecotourism development, Monitoring
ensuring minimal impact on wildlife habitats UAVs are well-suited for monitoring dugong 
(Ayad, 2021). Additionally, continuous monitor- feeding trails and seagrass distribution on a local 
ing of feeding trails provides long-term data on scale due to several key advantages. Their ability 
population and behavioral changes, informing to navigate challenging locations allows access 
conservation strategies and supporting sustainable to remote areas, while automation and autono-
wildlife management in response to environmen- mous flight capabilities enhance data collection 
tal and climate changes. efficiency. UAVs are cost-effective compared 

to traditional methods, requiring less infrastruc-
The Methodologies and the Use of UAV Imagery ture and manpower; and they cause fewer dis-
for Seagrass and Dugong Feeding Trail Monitoring turbances to wildlife (Krause et al., 2021). With 
Recent advancements in UAV-attached sensors, high-resolution imaging, UAVs enable detailed 
such as multispectral cameras, have enabled monitoring, such as tracking changes in seagrass 
improved mapping of intertidal seagrass areas, abundance and distribution (Bernard et al., 2007). 
becoming widely used to assess seagrass cover Additionally, UAVs can be equipped with various 
and biomass (James et al., 2020; Román et al., sensors to collect specific data, supporting appli-
2021). NDVI images are particularly valuable for cations like assessing marine ecosystem health 
identifying vegetation by visualizing vegetation and seagrass responses to stress (Aoki et al., 2022, 
health and density (Huang et al., 2021). While 2023; B. Yang et al., 2023). Their versatility, cost-
lightweight hyperspectral sensors for UAVs have effectiveness, and efficiency make UAVs ideal 
been developed, their use remains limited due to for local-scale dugong feeding trail and seagrass 
complex pre- and post-flight analysis (Adão et al., monitoring.
2017). While UAVs offer advantages for monitoring 

RGB images provide detailed plant charac- seagrass and dugongs, their adoption presents 
teristics, while NDVI images assess vegetation several challenges. Technical limitations, such 
density, with higher values indicating denser as flight endurance, payload capacity, and sensor 
vegetation. NDVI effectively detects spatial and resolution, must be considered. Data process-
temporal changes in seagrass ecosystems (Lyons ing challenges include managing large volumes 
et al., 2011; Roelfsema et al., 2014; Benmokhtar of imagery, ensuring data accuracy, and inte-
et al., 2023) and can be enhanced with color scales grating findings for conservation management. 
to measure vegetation health more precisely Environmental factors like water levels, turbid-
(Huang et al., 2021). When dugongs consume ity, and sun glint can affect image quality, while 
seagrass, they create feeding trails by uprooting adverse weather conditions, such as rain and 
plants. In this study, in denser areas (e.g., Juhoi), strong winds, can hinder UAV flights and com-
both RGB and NDVI effectively detected feed- promise data collection (Hodgson et al., 2013; 
ing trails, with RGB identifying distinct trails and B. Yang et al., 2023).
NDVI highlighting contrasts. In sparse areas (e.g., 
Dugong Tower and Saco), NDVI provided clearer 
detection.
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Conclusions
This study demonstrates the use of UAVs to detect 
seagrass distribution and dugong feeding grounds 
in intertidal seagrass meadows. We also provided 
examples of seagrass classification schemes. 
Additionally, we combined aerial survey data 
with ground surveys to obtain spatial information 
on seagrass areas and the distribution of dugong 
feeding trails in three geographically diverse loca-
tions: (1) Juhoi and (2) Dugong Tower, Libong 
Island, Thailand, and (3) Saco, Inhaca Island, 
Mozambique, as well as the temporal distribu-
tion of dugong feeding trails on Mook Island, 
Thailand. While UAVs provide valuable data for 
monitoring seagrass and dugong feeding areas, 
challenges such as restricted flight endurance and 
adverse weather conditions can limit their suit-
ability for environmental monitoring in certain 
situations.

To address challenges in UAV-based environ-
mental monitoring, advancements in technology, 
regulatory frameworks, and operations continue 
to expand their application. Combining UAV 
technology with dugong feeding trail monitoring 
improves our ability to study and protect dugongs 
and their seagrass habitats. The integration of 
advanced sensors, machine learning, and remote 
sensing offers a comprehensive approach to eco-
logical research and conservation. Additionally, 
expertise in seagrass and dugong biology, along 
with data analysis skills, is crucial for accurately 
processing and interpreting the data.

Further research into integrating machine learn-
ing with UAV data can improve the identification of 
dugong feeding trails by automating image analysis 
and recognizing foraging patterns. Incorporating 
bathymetric data, time-series maps, and extensive 
UAV surveys can enhance the accuracy of seagrass 
dynamics estimations, aiding effective conserva-
tion and management.

Note: The supplemental figures for this article are 
available in the “Supplemental Material” section of 
the Aquatic Mammals website: https://www.aquatic-
mammalsjournal.org/supplemental-material.
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